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Abstract
Background: Toxic metals, like lead, are risk factors for preterm birth (PTB), but few 
studies have examined low levels found in most Canadians. Vitamin D, which may 
have antioxidant activity, protects against PTB.
Objectives: In this study, we investigated the impact of toxic metals (lead, mercury, 
cadmium and arsenic) on PTB and examined if maternal plasma vitamin D concentra-
tions modify these associations.
Methods: We investigated whether concentrations of metals in whole blood meas-
ured in early and late pregnancy were associated with PTB (<37 weeks) and sponta-
neous PTB in 1851 live births from the Maternal–Infant Research on Environmental 
Chemicals Study using discrete time survival analysis. We also investigated whether 
the risk of PTB was modified by first-trimester plasma 25-hydroxyvitamin D (25OHD) 
concentrations.
Results: Of 1851 live births, 6.1% (n = 113) were PTBs and 4.9% (n = 89) were spon-
taneous PTB. A 1 μg/dL increase in blood lead concentrations during pregnancy was 
associated with an increased risk of PTB (relative risk [RR] 1.48, 95% confidence in-
terval [CI] 1.00, 2.20) and spontaneous PTB (RR 1.71, 95% CI 1.13, 2.60). The risk was 
higher in women with insufficient vitamin D concentrations (25OHD <50 nmol/L) for 
both PTB (RR 2.42, 95% CI 1.01, 5.79) and spontaneous PTB (RR 3.04, 95% CI 1.15, 
8.04). However, an interaction on the additive scale was not present. Arsenic was as-
sociated with a higher risk of PTB (RR 1.10, 95% CI 1.02, 1.19) and spontaneous PTB 
(RR 1.11, 95% CI 1.03, 1.20) per 1 μg/L.
Conclusions: Gestational exposure to low levels of lead and arsenic may increase the 
risk of PTB and spontaneous PTB; individuals with insufficient vitamin D may be more 
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1  |  BACKGROUND

Preterm birth (PTB) is the leading risk factor for death in children 
under 5 years of age globally.1 PTB is a risk factor for neurodevel-
opmental disorders2 childhood asthma3 and cardiovascular dis-
eases in young adulthood.4 Globally, 10.6% of all live births are 
PTB (<37 weeks gestational age); in Canada, about 8% of births are 
preterm.5

Toxic metals such as lead (Pb) are associated with PTB,6–9 but 
few studies have explored this association at the low levels found 
in most Canadian women (GMPb 0.87 μg/dL).10 Pb and other toxic 
metals are associated with higher concentrations of reactive oxy-
gen species in the placenta11 and inflammatory markers, such as ma-
trix metalloproteinases (MMPs) in third-trimester maternal blood.12 
MMPs have been implicated in cervical ripening and premature 
rupture of membranes.13 Conversely, vitamin D, which may have 
antioxidant activity,14 protects against PTB.15 Further, vitamin D 
may modify toxic metal exposures in pregnancy.16 We found that 
increasing 25-hydroxyvitamin D (25OHD) concentrations during 
early pregnancy were associated with lower cadmium (Cd) and Pb 
concentrations in the third trimester.17

We sought to investigate the individual and joint association 
between the metals arsenic, Cd, Pb, mercury (Hg) and vitamin D 
(25OHD) with PTB. In addition, PTB has a multifactorial aetiology, 
and more focus is needed to understand the mechanisms behind 
chemical exposures and PTB by separating PTB phenotypes.18 To 
address this, we also investigated a sub-phenotype of PTB, thought 
to be prompted by inflammation or infection, by examining a sub-
group of PTBs with spontaneous preterm labour and/or preterm 
premature rupture of membranes (pPROM).19

2  |  METHODS

The Maternal–Infant Research on Environmental Chemicals Study 
(MIREC) is a prospective cohort study that recruited individuals in 
their first trimester of pregnancy (<14 weeks gestation) between 
2008–2011 from medical clinics (ultrasound, midwife and/or doc-
tor's clinics) in 10 Canadian cities (Vancouver, Edmonton, Winnipeg, 
Sudbury, Hamilton, Toronto, Kingston, Ottawa, Montreal, and 
Halifax).20 Participants were eligible for the MIREC study if they 
were 18 years or older, <14 weeks pregnant, willing to provide a cord 
blood sample and planning on delivering at a local hospital.20 We 
excluded pregnant individuals if they had known fetal abnormalities 

or medical complications such as renal, heart, liver, pulmonary or a 
collagen disease, epilepsy, threatened spontaneous abortion, illicit 
drug use or a haematological disorder (eFigure S1). Participants pro-
vided blood and urine samples and completed questionnaires in the 
first and third trimesters of pregnancy. At delivery, a chart review 
was completed in order to obtain information on the delivery and 
neonatal outcomes. Research Ethics Board approval was obtained 
at Health Canada and all study sites; all study participants provided 
informed consent.

2.1  |  Specimen collection and laboratory analysis

We analysed maternal whole blood specimens from the first and 
third trimester at the Centre de Toxicologie du Québec (CTQ), 
Institut national de Santé Publique du Québec (INSPQ) for total 
blood arsenic, Cd, Pb and Hg concentrations.21 At Health Canada's 
Foods Directorate Laboratory, we analysed maternal blood plasma 
collected in the first and third trimesters for total 25OHD, as previ-
ously reported in detail;22 this laboratory participates in the Vitamin 
D Standardisation Certification Program (VDSCP). For values below 
the limit of detection (LOD), we imputed LOD/2.

susceptible to the adverse effects of lead. Given our relatively small number of cases, 
we encourage testing of this hypothesis in other cohorts, especially those with vita-
min D-deficient populations.

K E Y W O R D S
25-hydroxyvitamin D, arsenic, cadmium, lead, mercury, metals, preterm birth

Synopsis

Study question

Are toxic blood metals (lead, mercury, cadmium and arse-
nic) associated with preterm birth? Do maternal plasma vi-
tamin D concentrations modify these associations?

What's already known

Toxic metals, like lead, are risk factors for preterm birth, 
but few studies have studied low levels observed in most 
Canadians. Some studies find that vitamin D, which may 
have antioxidant activity, protects against preterm birth.

What this study adds

This study suggests that the association between lead and 
preterm birth may be stronger in women with insufficient 
vitamin D status.

 13653016, 2023, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ppe.12962 by C

ochrane C
anada Provision, W

iley O
nline L

ibrary on [27/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense
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2.2  |  Exposures

Time-varying exposures (arsenic, Cd, Pb and Hg and 25OHD) were 
analysed both continuously and categorically for 25OHD (<50 
or ≥ 50 nmol/L) basing our cut points on those proposed by the 
Institute of Medicine23 for plasma 25OHD, the widely accepted bio-
marker of vitamin D status.24 No specific guidelines exist for vitamin 
D in pregnancy but a concentration of 50 nmol/L (sufficient vitamin 
D status) would meet the needs of at least 97.5% of the population 
(Recommended Dietary Allowance; RDA). In addition, as a sensitiv-
ity analysis, we considered the population recommendation for ad-
equate vitamin D status ≥40 nmol/L23 as the lower cut point in our 
categorical analysis for 25OHD.

2.3  |  Outcomes

We defined PTB as live births occurring between 20 and <37 weeks 
as indicated by chart review at delivery. Consistent with work done 
by Ferguson and Chin,25 we defined spontaneous PTB as PTB with 
spontaneous labour and/or pPROM as noted in their medical chart 
at delivery. We excluded medically indicated (e.g., preeclampsia, 
gestational diabetes) PTB from this subgroup analysis (eFigure S1).

2.4  |  Covariates

We used Directed Acyclic Graphs (DAGs) to conceptualise potential 
covariate relationships and identify confounders, not on the causal 
pathway between each exposure and PTB (eFigures S2 and S6). We 
considered both continuous (maternal age, pre-pregnancy BMI) and 
categorical time-invariant covariates (mother's birthplace, maternal 
education, gross annual household income, marital status, parity 
and sex of baby), and time-varying confounders (season of blood 
collection, fish consumption, smoking status, and walking duration 
on a typical day as a proxy measure for physical activity) assessed in 
the first and third trimester (Table 1). We considered all covariates 
in our analysis, but for our final models, we prioritised model par-
simony due to the modest sample size, 17 time-indicator variables 
(see below) and relative rarity of the outcome. We included pre-
pregnancy BMI, maternal age, season, smoking status, fish consump-
tion and self-reported walking in the final models; these covariates 
were most strongly associated with PTB in our data and/or changed 
a metal effect estimate by 10% or more.

2.5  |  Statistical analysis

We used discrete-time survival analysis with logistic regres-
sion26–28 to characterise the hazard probability of PTB between 
20 and 36 weeks +6 days of gestation. Given that we obtained the 
exposure data in discrete time intervals during pregnancy but over 
a range of gestational ages, we modelled time using 17 indicator 

variables for each gestational week (20 to 36 completed weeks) at 
risk of PTB (the event). Births prior to 20 weeks were considered 
miscarriages, and births that occurred at 37 weeks or later were 
censored because they were no longer at risk of the event (PTB). 
This method produces an overall odds ratio for the effect of a pre-
dictor on PTB and a hazard function. We plotted this function at 
different values of a predictor (e.g., 95th percentile of Pb), holding 
all other variables constant for each of the 17 time points. Given 
the prevalence of PTB is <10%, the odds ratios are a valid approxi-
mation to the relative risk (RR) and therefore are referred to as RR 
in this paper.

We fit discrete-time survival analysis with logistic regression 
following the sequential methods proposed by Singer and Willet27 
beginning with Model 1 (Base Model), where the number of PTBs 
is considered to only depend on time (17 gestational weeks at risk). 
Model 2 builds on the base model where we examined the effect 
of each covariate selected in the DAG and described above (time-
varying and time-invariant) on the model, the exposures, along with 
an interaction term between covariate or exposures and time vari-
ables to determine the validity of the proportionality assumption.27 
For our final model, we included pre-pregnancy BMI, maternal age, 
season, smoking status, fish consumption and self-reported walking.

We examined time-varying (taking into account both first- and 
third-trimester measures) exposures for each metal in separate 
models. We did not consider exposure time points separately 
given the high correlation between first- and third-trimester met-
als and 25OHD concentrations (eTable  S1) making it difficult to 
consider one trimester without the other. To determine if an inter-
action was present, we examined the log odds of the interaction 
term between vitamin D (<50 vs ≥50 nmol/L) and metals with PTB. 
We also conducted stratified analyses to estimate the association 
between metals and PTB in women with insufficient (<50 nmol/L) 
and sufficient vitamin D status (≥50 nmol/L) separately. Finally, 
to determine departure from additivity, we estimated the crude 
and adjusted relative excess risk due to interaction (RERI) using 
the method proposed by Knol et al.29 for one continuous and one 
dichotomous determinant and dichotomous outcome, bootstrap-
ping 1000 times. As a sensitivity analysis, we re-ran all models 
with continuous exposure estimated for a change in interquartile 
range (eTable S2 and S3). We assumed that the predictors are lin-
early associated with the logistic transformation of hazard (logit 
hazard). To test for non-linearity between the metal exposures 
and the outcome, we tested a quadratic term (e.g., Pb + Pb2) in the 
model and compared model fit (deviance/AIC) with and without 
the term.

2.6  |  Missing data

Discrete-time survival analysis requires a person-period format; 
therefore, the number of records for each participant may vary by 
the duration at risk. When gestational age was missing for third-
trimester exposure measurements (n  =  3, 1.8% of participants), 
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TA B L E  1  Population characteristics by category of Preterm Births (PTBs) - number of PTBs by category, % of total births in category

Covariates

All preterm birth (n = 113, 6.1% 
of births)

Spontaneous preterm birth (n = 89, 
4.9% of births)

Number (%) Number (%)

Maternal agea (years)

<25 9 (7.0) 4 (3.3)

25–29 18 (4.1) 14 (3.2)

30–34 38 (5.8) 33 (5.1)

35+ 48 (7.7) 38 (6.2)

Paritya

0 50 (6.2) 37 (4.6)

1 47 (6.3) 39 (5.3)

2+ 16 (5.8) 13 (4.5)

Sex of babyb

Male 62 (6.3) 50 (5.2)

Female 51 (5.8) 39 (4.5)

Pre-pregnancy BMIc (kg/m2)

Underweight (<18.5) 54 (5.0) 48 (4.4)

Normal (<25)
Overweight (25–29)

20 (5.4) 15 (4.1)

Obese (BMI ≥30) 31 (12.2) 20 (8.2)

Educationb

Some college, High School or Less than 18 (6.3) 11 (4.4)

High School
College/Trade Diploma

32 (6.6) 28 (6.5)

Undergraduate degree 36 (5.3) 28 (4.2)

Graduate degree 27 (5.7) 22 (4.7)

Household Income ($, CAD)a

<50,000 26 (6.6) 16 (4.0)

50,000-100,000 42 (6.7) 34 (5.4)

>100,000 28 (5.6) 32 (4.5)

Do not know/refused to answer 7 (8.1) 7 (8.1)

Canadian Borna

No 24 (6.8) 21 (6.1)

Yes 89 (5.9) 68 (4.6)

Marital statusa

Married 77 (5.8) 64 (4.9)

Same partner for >1 year 29 (6.7) 19 (4.5)

Divorced/separated/single/other 7 (8.0) 6 (6.9)

Season at sample collection (trimester 1)b

Fall (Sept 21-Dec 20) 27 (5.0) 19 (3.6)

Winter (Dec 21 – March 20) 37 (8.4) 28 (6.5)

Spring (Mar 21 – June 20) 24 (5.6) 21 (5.0)

Spring (Mar 21 – June 20) 25 (5.7) 21 (4.9)

Season at sample collection (trimester 3)

Fall (Sept 21-Dec 20)b 23 (5.1) 18 (4.0)

Winter (Dec 21 – March 20) 22 (5.3) 17 (4.2)
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we imputed the average gestational age (32 weeks) for all third-
trimester measurements in the cohort. We had complete exposure, 
outcome and covariate data for 77% of our participants. For miss-
ing time-varying covariates (smoking, fish consumption and walk-
ing duration per day) for which we had information from one time 
point (first trimester) for that participant, we carried this information 
forward. Other exposures or covariates with >5% missing included 

pre-pregnancy BMI (7.5%), third-trimester metals (12%), and 25OHD 
(13%). We assumed that missing data were missing at random (MAR) 
and did not find any major differences across groups based on miss-
ingness (eTable S4–S5 and eFigures S7 and S8). We used Multiple 
Imputation using Chained Equations (MICE) with predicted mean 
matching (PMM)30 to impute the remaining missing exposure and 
covariates information (m = 50 datasets) using SAS PROC MI.

Covariates

All preterm birth (n = 113, 6.1% 
of births)

Spontaneous preterm birth (n = 89, 
4.9% of births)

Number (%) Number (%)

Spring (Mar 21 – June 20) 27 (4.9) 20 (3.7)

Spring (Mar 21 – June 20) 41 (9.6) 34 (8.1)

Smoking status at trimester 1b

Never/former smoker 99 (6.1) 78 (4.9)

Smoker/quit during pregnancy 14 (6.4) 11 (5.1)

Smoking status at trimester 3b

Never/former smoker 99 (6.1) 78 (4.9)

Smoker/quit during pregnancy 14 (6.2) 11 (4.9)

Fish consumption at trimester 1b

No fish 14 (5.4) 13 (5.0)

Up to 1 time per week 55 (6.9) 47 (6.0)

>1 but ≤2 times per week 22 (5.3) 14 (3.5)

>2 times per week 22 (5.8) 15 (4.0)

Fish consumption at trimester 3b

No fish 22 (8.1) 19 (7.0)

up to 1 time per week 48 (6.1) 38 (4.9)

>1 but ≤2 times per week 21 (4.9) 16 (3.8)

>2 times per week 22 (6.2) 16 (4.6)

Walking duration at trimester 1 (minutes)b

<30 minutes per day 13 (7.3) 9 (5.2)

Between 30 and < 60 minutes per day 23 (5.8) 17 (4.4)

Between 60 and < 120 minutes per day 34 (7.2) 31 (6.7)

≥120 minutes per day 43 (5.3) 32 (4.0)

Walking duration at trimester 3 (minutes)b

<30 minutes per day 15 (8.8) 10 (6.1)

Between 30 and < 60 minutes per day 29 (7.9) 24 (6.7)

Between 60 and < 120 minutes per day 24 (4.9) 21 (4.3)

≥120 minutes per day 45 (5.5) 34 (4.2)

First-trimester Vitamin D (nmol/L)d

<50 nmol/L 25OHD 20 (7.2) 14 (5.2)

≥50 nmol/L 25OHD 90 (5.9) 72 (4.8)

Note: Missing covariate information for sample (ntotal = 1851). See Supporting Information eFigure S7 and S8 for further information on missingness.
Abbreviations: %, the per cent of births that are preterm in that category; 25OHD, 25-hydroxyvitamin D; n, number of preterm births within 
category.
a0%.
b<1%.
c7.5%.
d3.3%.

TA B L E  1  (Continued)
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To consider unmeasured confounding, we estimated the E-value 
for those estimates with non-overlapping confidence intervals.31

All statistical analyses were performed using SAS Enterprise 
Guide 7.15 (SAS Institute Inc., Cary, NC 2017).

3  |  RESULTS

The MIREC study initially recruited 2001 pregnant women be-
tween the years 2008–2011. Eighteen participants subsequently 
withdrew from the study, and 1851 (93%) participants had a live 
singleton birth with one or more metal or 25OHD concentration 
measurements (eFigure S1). Of these, 113 (6.1%) were PTBs and 89 
(4.9%) were spontaneous PTBs, which is lower than the Canadian 
PTB rate during this time period (range 7.6%–8.0% of live births).32 
The characteristics of the MIREC cohort are shown in Table 1. The 
prevalence of PTB was higher in older and younger participants and 
with increasing pre-pregnancy BMI levels. The prevalence of PTB 
was somewhat lower in participants who were higher fish consum-
ers and self-reported that they walked more. A higher prevalence 
of PTB (9.8%) and spontaneous PTB (8.1%) was observed among 
participants whose third-trimester visit (mean 33 weeks' gestation) 
occurred in the summer. First- and third-trimester metal and 25OHD 
concentrations were moderately to highly correlated between tri-
mesters (eTable S1).

First-trimester geometric means for total blood arsenic, Cd, Pb 
and Hg were slightly higher than third-trimester concentrations 
while the opposite pattern emerged for 25OHD (Table  2). Mean 
25OHD concentrations were lower in the first trimester (69.7 nmo-
l/L) compared to the 3rd (78.4 nmol/L).

In adjusted models, we observed an increased risk of PTB per 
unit increase in Pb exposure (Table 3). A 1 μg/dL increase in Pb ex-
posure during pregnancy was associated with an increased risk of 
any PTB, and a spontaneous PTB. A 1 μg/L increase in arsenic was 
also associated with an elevated risk of preterm and spontaneous 
PTB. These associations were constant over the 17 time periods 
(20–36 weeks) given we did not see an interaction between any 
of the metals and time in our dataset. Because we also modelled 
time discretely as a predictor, we can show the hazard of PTB at 
each time point (20–36 weeks) given it did not previously occur 
(conditional probability). Figures 1 and 2 provide the hazard profile 
at each time point for lead and arsenic at the median, 5th and 95th 
percentile of exposure. Cadmium and mercury concentrations were 
not associated with odds of PTB in this cohort (Table 3). We tested 
for non-linearity in the exposures (Pb and arsenic) by fitting a qua-
dratic term in the model and found no evidence of non-linearity. In 
addition, the deviance and AIC results were comparable to those 
from the linear model. We found consistent but somewhat attenu-
ated results per IQR increase in Pb (0.39 μg/dL) with PTB and spon-
taneous PTB (eTable  S2). For arsenic, an IQR increase (0.63 μg/L) 
was associated with a 6% (RR 1.06, 95% CI 1.01, 1.11) and 7% (RR 
1.07, 95% CI 1.02, 1.12) higher risk of PTB and spontaneous PTB, 
respectively. As a continuous variable, 25OHD showed no evidence TA
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of an association with PTB (Table 3). Similarly, no association was 
seen in our categorical analysis (<50 vs ≥50 nmol/L) with PTB 
(Table 3, eFigure S9); in a sensitivity analysis, however, participants 
with 25OHD concentrations below 40 nmol/L had an increased, 
but imprecise, risk of PTB and spontaneous PTB (eFigure S10 and 
Table S7).

Next, we examined whether vitamin D status modified the as-
sociation between Pb and the risk of PTB. We observed a weak 

interaction between categorical 25OHD (<50, ≥50 nmol/L) and con-
tinuous Pb with PTB (log odds 0.98, 95% CI −0.17, 2.13) and spon-
taneous PTB (log odds 1.13, 95% CI −0.07, 2.33), that we further 
investigated in a stratified analysis with 25OHD concentrations 
<50 and ≥ 50 nmol/L.23 Participants with insufficient vitamin D 
status (<50 nmol/L) had an elevated risk of PTB (RR 2.42, 95% CI 
1.01, 5.79) and spontaneous PTB (RR 3.04, 95% CI 1.15, 8.04) for 
each unit increase in Pb. By contrast, for participants with 25OHD 

F I G U R E  1  Adjusted hazard probability of preterm birth with respect to blood lead concentration at the median, 5th and 95th percentile
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F I G U R E  2  Adjusted hazard probability of preterm birth with respect to blood arsenic concentration at the median, 5th and 95th 
percentile
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concentrations ≥50 nmol/L, the risk of PTB (RR 1.29, 95% CI 0.80, 
2.07) and spontaneous PTB (RR 1.50, 95% CI 0.91, 2.45) were atten-
uated. However, we did not see evidence of an additive interaction 
in our adjusted models (Table 4).

4  |  COMMENT

4.1  |  Principal findings

Although our pregnant population had low blood Pb levels (95th per-
centile <1.5 ug/dL), we observed an elevated risk of PTB with increas-
ing blood Pb exposure. Our results show that vitamin D status may 
modify the adverse effect of blood Pb on PTB risk. The risk of spon-
taneous PTB was 3-fold higher for each 1 μg/dL increase in blood Pb 
in participants with 25OHD concentrations below 50 nmol/L. The as-
sociation was attenuated among participants with 25OHD concentra-
tions ≥50 nmol/L. However, we did not see evidence of an interaction 
on the additive scale. Finally, we observed an elevation in the odds of 
PTB and spontaneous PTB for a 1-unit increase in arsenic concentra-
tions; however, no modification was seen by vitamin D status.

4.2  |  Strengths of the study

A strength of this study is the prospective nature of the MIREC cohort 
and measurements at two time points during pregnancy of the metals 
(arsenic, Cd, Pb, Hg), 25OHD and several covariates. The discrete-
time survival analysis allowed us to use all of our data by accounting 
for several time-varying covariates and exposures and to include time 
as a predictor of PTB. In addition, the time-varying method allowed 
us to take into account the change in metal levels between trimesters 
1 and 3 instead of a single time point. Unlike most previous studies, 
we conducted analyses by sub-phenotype of PTB.18

4.3  |  Limitations of the data

We did not distinguish between inorganic and organic arsenic, but 
we did control for fish consumption, the main source of organic 
arsenic. Although we considered covariates known to be associ-
ated with vitamin D status (maternal age, socioeconomic status, 
ethnicity, physical activity and higher BMI),22 measurement error is 
a ubiquitous problem. Still, we suspect that this would have been 
non-differential and biased our results towards the null. According 
to the E-value calculation31 of the effect estimates, a strong unmeas-
ured confounder would be needed to explain away the association 
between continuous lead and spontaneous preterm birth and for 
this same association in those with <50 nmol/L 25OHD. Finally, the 
MIREC study had a relatively small number of preterm births and 
limited power for examining those with low vitamin D. The MIREC 
study also consists of mainly white women of higher socioeconomic 
status. De facto restrictions of this nature minimised unmeasured 
confounding, but it limited exposure variability and generalisability.

4.4  |  Interpretation

Pregnancy cohort studies from China (meanPb 1.5 μg/dL),33,34 Iran 
(GMPb 3.8 μg/dL),9 Australia (meanPb 10.6 μg/dL)35 and the United 
Kingdom (meanPb 3.7  μg/dL)6 also found elevated odds of PTB 

TA B L E  3  Relative Risk (95% CI) of preterm birth per unit 
increase in exposure

Exposure (units)

Relative risk (95% confidence interval)

All Preterm Births
Spontaneous 
Preterm Births

Arsenic (μg/L) 1.10 (1.02, 1.19) 1.11 (1.03, 1.20)

Cadmium (μg/L) 0.70 (0.32, 1.52 0.68 (0.28, 1.63)

Lead (μg/dL) 1.48 (1.00, 2.20) 1.71 (1.13, 2.60)

Mercury (μg/L) 0.83 (0.59, 1.17) 0.85 (0.59, 1.21)

25OHD (nmol/L) 1.00 (0.99, 1.01) 1.00 (1.00, 1.01)

250HD (<50 nmol/L vs 
≥50 nmol/L (reference)

0.89 (0.45, 1.76) 0.93 (0.44, 1.99)

Note: Imputed Models (m = 50 imputations) adjusted for maternal age, 
pre-pregnancy BMI, season, fish consumption, self-reported walking 
and smoking. All models contain time-varying exposures (arsenic, Cd, 
Pb, Hg, 25OHD continuous and then dichotomous with a cut point 
at 50 nmol/L) and covariates (season, fish consumption, self-reported 
walking and smoking) and time fixed covariates (maternal age, pre-
pregnancy BMI).

TA B L E  4  Associations between preterm birth and metal 
exposure (per unit increase) by Vitamin D Status – Stratified 
analysis by 25OHD concentrations <50 and ≥ 50 nmol/L

Participants with 
25OHD < 50 nmol/L, 
(n = 20 PTB, n = 357 
term births)

Participants with 
25OHD ≥ 50 nmol/L, 
(n = 90 PTB, n = 1426 
term births)

All preterm Birth

Arsenic (μg/L) 1.18 (0.86, 1.61) 1.01 (0.80, 2.28)

Cadmium 
(μg/L)

0.97 (0.33, 2.89) 0.53 (0.17, 1.68)

Lead (μg/dL) 2.42 (1.01, 5.79) 1.29 (0.80, 2.07)

Mercury 
(μg/L)

0.72 (0.29, 1.76) 0.86 (0.60, 1.23)

Spontaneous 
preterm Birth

25OHD < 50 nmol/L 
(n = 14 PTB n = 257 
term births)

25OHD ≥ 50 nmol/L 
(n = 72 PTB, n = 1426 
term births)

RR (95% CI) RR (95% CI)

Arsenic (μg/L) 1.20 (0.80, 1.80) 1.01 (0.80, 1.28)

Cadmium (μg/L) 0.86 (0.27, 2.70) 0.50 (0.13, 1.92)

Lead (μg/dL) 3.04 (1.15, 8.04) 1.50 (0.91, 2.45)

Mercury (μg/L) 0.64 (0.21, 2.00) 0.88 (0.60, 1.28)

Note: Relative risks were adjusted for maternal age, pre-pregnancy BMI, 
season, fish consumption, self-reported walking and smoking.Exposure 
is continuous and time-varying.
Relative excess risk due to interaction spontaneous PTB bootstrapped 
1000 times (RERIunadjusted) 0.46 (95% CI −1.66, 1.81); RERIadjusted: 0.52 
(95% CI −2.91, 1.68).
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with increasing maternal blood Pb concentrations. These studies 
had higher Pb levels and more variability than the MIREC cohort. 
A California-based study (1995–2002) that linked birth records 
with blood Pb testing during pregnancy (anytime between day 1 
and delivery) of 262 mother-infant pairs found a negative associa-
tion between blood Pb levels and gestational length, among those 
whose blood Pb levels were ≥ 10 μg/dL.8 In addition, studies from 
India,36 Indonesia,37 Australia38 and Spain39 have shown elevated 
placental Pb levels in preterm versus term deliveries. In contrast, 
other studies that measured maternal blood Pb exposure during 
pregnancy,40–42 at birth37 or currently, in a retrospective study,43 
did not report an association with PTB. The lack of association 
in some previous studies may be due to low power,41–43 study 
design (cross-sectional,37 retrospective43), very low blood Pb 
levels,40 differing timings of exposure measures, statistical meth-
ods and distribution of effect modifiers, such as serum vitamin D 
concentrations.

Few studies have explored the association between blood 
arsenic and PTB.44 In the China-Anhui Birth Cohort, where the 
median serum total arsenic concentrations collected between 
4–17 weeks' gestation was 4.87 μg/L, higher PTB rates were ob-
served among participants with As concentrations above the 75th 
percentile compared to those below this cut-point (OR  =  1.5, 
95% CI: 1.08, 2.09). Highly exposed populations in Bangladesh 
and Taiwan have shown elevated rates of PTB based on drinking 
water45–47 and toenail arsenic levels.47 In the United States, PTB 
was spatially associated with higher estimated levels of arsenic in 
groundwater from New Hampshire.48 In Ohio, among individuals 
living in counties where fewer than 10% or 20% of households 
used private wells as their drinking water source, those counties 
with higher arsenic levels in their water supply showed a signif-
icant increase in the odds of PTB relative to those who lived in 
counties with lower arsenic.49

In a previous analysis of the MIREC cohort, increasing vitamin D 
intake, measured by a food frequency questionnaire in the second 
trimester, was associated with reduced blood Pb and Cd in the third 
trimester and in cord blood.21 In addition, we previously reported 
that increasing 25OHD concentrations in the first trimester of preg-
nancy was associated with reduced Pb and Cd concentrations in the 
third trimester.17 A study from the LIFECODES pregnancy cohort16 
reported that women with low first-trimester 25OHD concentra-
tions (<50 nmol/L) had 47% higher urinary Pb concentrations in the 
second trimester.

25OHD concentrations may modify the association between Pb 
and PTB via vitamin D's role as a probable antioxidant.50 Oxidative 
stress, defined as an imbalance between cellular reactive oxygen 
species (ROS) and antioxidants,51 has been associated with a num-
ber of pregnancy outcomes including PTB.52 Pb has been shown 
to up-regulate ROS53 which can stimulate pro-inflammatory en-
zymes.54 Associations have been observed between blood Pb and 
elevated inflammatory biomarkers such as IL-1β, IL-6 and TNF-α55 
and MMPs.12,56 MMP-9, which has known associations with cervical 
ripening and PTB,53 was associated with elevated Pb exposure in 

the first trimester of pregnancy in another analysis of the MIREC 
cohort.12 On the other hand, micronutrients are known to down-
regulate ROS.37 Reports show an inverse relationship between 
25OHD concentrations and serum MMP-9 levels in vascular dis-
eases.57 A double-blind randomised controlled trial of 48 pregnant 
women who were randomised to receive 400 IU/d of cholecalciferol 
(D3) supplements or placebo for 9 weeks showed significant de-
creases in inflammatory markers and significant increases in plasma 
concentrations of total antioxidant capacity and the major antioxi-
dant glutathione.58 It may be that vitamin D helps to counteract in-
creased systemic inflammation induced by lead by acting as a free 
radical scavenger and preventing and repairing damages caused by 
ROS59; however, whether vitamin D acts as an antioxidant remains 
controversial.60

5  |  CONCLUSIONS

Lead and arsenic may increase the risk of PTB and spontaneous 
PTB, even at the lower levels found in this Canadian pregnancy and 
birth cohort. For lead, this association was stronger in participants 
with insufficient 25OHD concentrations (<50 nmol/L) suggesting 
that these women may be more vulnerable to the potential adverse 
effects of Pb. However, we did not see an interaction on the ad-
ditive scale, and given our lack of power, we encourage testing of 
this hypothesis in other pregnancy cohorts with vitamin D-deficient 
populations.
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