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Background: Unsupervised machine learning techniques have 
become increasingly popular for studying associations between ges-
tational exposure mixtures and human health. Latent profile analysis 
is one method that has not been fully explored.
Methods: We estimated associations between gestational chemical 
mixtures and child neurodevelopment using latent profile analysis. 
Using data from the Maternal-Infant Research on Environmental 
Chemicals (MIREC) research platform, a longitudinal cohort of 
pregnant Canadian women and their children, we generated latent 
profiles from 27 gestational exposure biomarkers. We then exam-
ined the associations between these profiles and child Verbal IQ, 
Performance IQ, and Full-Scale IQ, measured with the Wechsler 
Preschool and Primary Scale of Intelligence, Third Edition (WPPSI-
III). We validated our findings using k-means clustering.
Results: Latent profile analysis detected five latent profiles of expo-
sure: a reference profile containing 61% of the study participants, a 
high monoethyl phthalate (MEP) profile with moderately low per-
sistent organic pollutants (POPs) containing 26%, a high POP pro-
file containing 6%, a low POP profile containing 4%, and a smoking 

chemicals profile containing 3%. We observed negative associations 
between both the smoking chemicals and high MEP profiles and 
all IQ scores and between the high POP profile and Full-Scale and 
Verbal IQ scores. We also found a positive association between the 
low POP profile and Full-Scale and Performance IQ scores. All asso-
ciations had wide 95% confidence intervals.
Conclusions: Latent profile analysis is a promising technique for 
identifying patterns of chemical exposure and is worthy of further 
study for its use in examining complicated exposure mixtures.

Keywords: Child health; Latent profile analysis; Maternal expo-
sures; Unsupervised machine learning; Wechsler scales

(Epidemiology 2023;34: 45–55)

Neurotoxicant exposure during the gestational period can 
severely impact cognitive development.1–4 Although the 

effects of many gestational neurotoxicants have been well 
documented, most studies focus on one chemical at a time, 
or restrict their models to toxicants in the same chemical 
group.1,3,5–11 These studies are not reflective of real-world 
exposures, where people encounter a complex mixture of 
chemicals from different classes every day.12 By studying 
chemicals individually or in small groups, researchers may 
underestimate the collective impact of exposure to multiple 
groups of chemicals and fail to identify interactions between 
toxicant effects.13 If there are high levels of correlation 
between exposure variables, studying these chemicals together 
in simple models can result in large standard errors if one does 
not account for collinearity.4,14,15 Multiple statistical methods 
exist for studying chemical mixtures, including unsupervised 
techniques such as k-means clustering, hierarchical cluster-
ing, and principal component analysis (PCA); however, the 
best method is unclear.2,5,9,15,16

Latent profile analysis is a model-based technique com-
monly used in psychology and behavioral sciences.17–21 It is 
designed to detect patterns in continuous independent vari-
ables, which are used to create homogenous subgroups called 
profiles. The method has been introduced to, but not fully 
explored in, the field of environmental epidemiology. In 2021, 
Khorrami et al.22 showed that it had promise as a method for 
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studying chemical mixtures, and studies have also used a sim-
ilar technique called latent class analysis for this purpose.23–24 
Latent profile analysis has been shown to have advantages 
compared with other methods such as k-means clustering, a 
popular clustering technique that has often been used to study 
chemical mixtures in environmental epidemiology.2,25–27 
Unlike k-means clustering, latent profile analysis generates 
profiles that are probabilistic, generating the posterior prob-
abilities that each observation will fall into each profile.28 
Posterior probabilities range from 0 to 1, with 1 denoting a 
perfect match between observation and profile. This provides 
more nuanced results than nonprobabilistic clustering meth-
ods such as k-means clustering because it allows researchers 
to assess classification accuracy.17–19 Also, latent profile analy-
sis does not have a bias toward creating groups of the same 
size, which k-means clustering does.29,30 Finally, the method 
does not require the researcher to predetermine the number of 
profiles and has more rigorous methods of choosing a model 
than k-means clustering.19,20,28

The aim of this study was to use latent profile analy-
sis to create profiles of gestational chemical exposures in 
pregnant Canadian women based on 27 biomarkers and to 
examine associations between profile membership and cogni-
tive scores. We validated our findings in a sensitivity analysis 
using k-means clustering, a more established unsupervised 
technique.

METHODS

Study Participants
We used data from the Maternal-Infant Research on 

Environmental Chemicals (MIREC) study, an ongoing preg-
nancy cohort that began in 2008.31–33 The primary objective 
of the MIREC study is to examine associations between 
gestational chemical exposures, measured using biomarkers 
in maternal blood and urine, and various health outcomes. 
Approximately 2000 participants from 10 Canadian cities 
were included in the original study (eFigure 1; http://links.lww.
com/EDE/B972). Details about eligibility and exclusion crite-
ria are outlined by Arbuckle et al.32 At age 36–48 months, a 
subset of 610 participating children in six cities were included 
in a follow-up study in which researchers assessed neurode-
velopment.3,34–36 We restricted our study to 517 mother–child 
pairs from this group based on the availability of biomarkers 
and intelligence quotient (IQ) scores.33,35,36

The MIREC study received ethics approval from Health 
Canada and the Institutional Review Board of CHU Sainte-
Justine Research Centre, as well as all recruitment centers. 
We also received approval from the Simon Fraser University 
office of research ethics (REB Number: 20160678). All par-
ticipants gave written informed consent.

Biomarkers of Gestational Toxicant Exposure
We studied 27 potential neurotoxicants measured in 

the first trimester: five metals, four organochlorine pesticides 

(OCPs), five organophosphate pesticide metabolites (OPPs), 
four phthalate metabolites plus the molar sum of Bis(2-
ethylhexyl) phthalate (DEHP) (comprised of mono-[2-ethyl-
5-hydroxyhexyl] phthalate, mono-[2-ethylhexyl] phthalate, 
and mono-[2-ethyl-5-oxohexyl] phthalate), six polychlori-
nated biphenyls (PCBs), one polybrominated diphenyl ether 
(PBDE), and cotinine (Table 1). We measured the metals, 
OCPs, PCBs, PBDE, and cotinine in maternal blood, and the 
OPPs and phthalates in maternal urine.32 Samples were col-
lected between 6 and 13 weeks of gestation, then quantified 
using gas chromatography/mass spectrometry at the Institut 
national de santé publique du Québec. We standardized the 
OCPs, PCBs, and PBDE using the total plasma-lipid con-
centrations to account for lipid dilution, and standardized 
the OPPs and phthalates using specific gravity to account for 
urine dilution, as described by Hu et al.15,37,38

Each biomarker had a limit of detection (LOD) below 
which it could not be measured; for chemical measures that 
fell <LOD, we employed a single imputation “fill-in” method 
described by Lubin et al.39 We first log2-transformed our 
chemicals to reduce skewness, then temporarily replaced the 
values <LOD with LOD/√2. We used these values to determine 
the mean and standard deviation of a truncated lognormal dis-
tribution. We replaced the values <LOD with values randomly 
sampled from this distribution. We excluded chemicals with 
greater than 60% of observations <LOD.

Child Cognitive Abilities
We assessed cognitive abilities using the Wechsler 

Preschool and Primary Scale of Intelligence, Third Edition 
(WPPSI-III) when the children were on average 3.4 years old 
(range: 2.8–4.2).1,3,35,36 The test was administered by trained 
examiners, typically in the children’s homes. The WPPSI-
III test generates a Verbal IQ (VIQ) score, which measures 
acquired knowledge and verbal abilities; a Performance IQ 
(PIQ) score, which measures nonverbal reasoning, spatial 
processing, attention, and visual-motor coordination; and a 
Full-Scale IQ (FSIQ) score, which measures overall cognitive 
abilities.40–42 All three IQ scores are scaled to a Canadian ref-
erence population with a mean of 100 and a standard devia-
tion of 15. Higher scores indicate greater cognitive abilities.

Statistical Analysis
Descriptive Statistics

After selecting our cohort from the MIREC study 
population, we assessed the central tendency and distribu-
tion of the mothers’ gestational biomarker concentrations. 
We compared these values to the exposure levels measured 
in Cycle 1 of the Canadian Health Measures Survey (CHMS; 
2007–2009) to ensure that our results reflected those of the 
Canadian population.43 We also assessed the distribution of 
the children’s WPPSI-III scores in the total group and by 
demographic, and then examined associations between the 
individual log2-transformed chemical concentrations and 
WPPSI-III scores.
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Latent Profile Analysis
We used latent profile analysis to create chemical 

mixture profiles based on 27 chemical biomarkers. We first 
conducted Pearson pairwise correlation analysis on the log2-
transformed biomarkers, then performed latent profile anal-
ysis with the R packages tidyLPA (tidyLPA: An R Package 
to Easily Carry Out Latent Profile Analysis [LPA] Using 
Open-Source or Commercial Software, Knoxville, Tennessee, 
USA)  and mclust (Gaussian Mixture Modelling for Model-
Based Clustering, Classification, and Density Estimation, 
Perugia, Italy; for information on how to access project code, 
see Supplementary Materials; http://links.lww.com/EDE/
B972).44 In total, we generated 36 models with up to 12 profiles 
and one of the following three sets of assumptions: equal vari-
ance and no covariance, varying variance and no covariance, 
and equal variance and covariance (eTable 3; http://links.lww.
com/EDE/B972). We used three quality measures to assess 
these models. First, we calculated the Bayesian Information 
Criterion (BIC) and the Akaike Information Criterion (AIC). 
These measures increase with model complexity and decrease 
with model validity; the goal is to achieve the smallest BIC 
and AIC possible.45 For each model, we also calculated 
entropy, assessing the confidence with which individuals were 
classified in each group (our cutoff for an acceptable model 
was 0.8).46 Finally, note that we considered model interpret-
ability (as recommended by Spurk et al.46), preferring models 
with more visibly distinct exposure profiles.

After determining the number of profiles, we generated 
the mothers’ posterior probabilities of profile membership. We 
then examined the demographic characteristics of participants 
in each profile. Additionally, we calculated the profiles’ mean 
chemical concentrations using the formula:

W =

∑
PiXi∑
Pi

where Xi is the log2-transformed chemical concentra-
tion in mother i and Pi is the posterior probability of profile 
membership in mother i. We converted the mean biomarker 
concentrations to z-scores to determine the patterns detected 
by latent profile analysis.

Covariates
Trained MIREC staff obtained data on potential con-

founders by administering standardized interviews and ques-
tionnaires to the pregnant mothers.3,34,47 To choose covariates 
for this study, we constructed a directed acyclic graph (DAG) 
using information from established literature (eFigure 2; http://
links.lww.com/EDE/B972).48–51 We adjusted for maternal age, 
race, education, marital status, household income, parity, pre-
natal alcohol exposure, Home Observation Measurement of 
the Environment (HOME scores; split into quartiles), and 
city of recruitment. We did not adjust for self-reported pre-
natal smoking because cotinine was a factor in profile gen-
eration. Gestational age and birth weight were excluded from 

the model because they act as mediators, not confounders.52 
Although we did not consider child sex a confounder, we strat-
ified results by sex because studies have estimated differing 
effects of gestational exposures on neurodevelopment in boys 
and girls.1,3,8 We also ran regression models that included all 
main effects of probability of profile membership as well as all 
two-way sex by probability of profile membership interaction 
terms, to systematically examine sex-specific associations.

Measures for several of our covariates were missing in 
a small number of participants. Prenatal alcohol was missing 
for 4.1% of mothers, household income for 3.5%, HOME 
scores for 3.3%, and maternal education for 0.4%. To miti-
gate this, we imputed multiple sets of values for each missing 
number using the R package mice (Multivariate Imputation 
by Chained Equations, Utrecht, Netherlands), then chose the 
single set of values that least impacted the frequency of each 
variable (mean for continuous variables or percentage for cat-
egorical variables).

Regression Analysis of the Latent Profiles
We used covariate-adjusted multiple linear regression 

analysis to measure the associations between profile mem-
bership and WPPSI-III scores, running separate regression 
models for VIQ, PIQ, and FSIQ. Each model included the 
posterior probabilities of profile membership for every profile 
except the reference, as shown in the following equation:

Y = β0 + β2Z2 + . . .+ βkZk + βc1C1 + . . .+ βcpCp� (1)

where Y is the WPPSI-III score, Z2 … Zk are the pos-
terior probabilities that a mother will fall into each of the k 
profiles, Z1 is the reference profile that is excluded from the 
model, and C1 … Cp are p confounders. For example, the 
quantity β3 would be the change in mean IQ score as the pos-
terior probability of membership in profile 3 increases from 
0 to 1, implying a 100% probability of inclusion in profile 3 
compared with profile 1, adjusted for p confounders.

Sensitivity Analysis Comparing Latent Profile 
Analysis With K-means Clustering

We conducted sensitivity analysis comparing latent 
profile analysis with k-means clustering. Unlike latent pro-
file analysis, k-means clustering requires that the researcher 
predetermine the number of clusters.53,54 We first ran several 
models and used the elbow method, assessing the total within-
cluster sum of squares, to confirm our choice. We generated a 
heat map of mean biomarker concentration z-scores and com-
pared them with the latent profile analysis results.

We used covariate-adjusted multiple linear regression 
analysis to measure the associations between cluster member-
ship and WPPSI-III scores, once again running separate mod-
els for VIQ, PIQ, and FSIQ. We created indicator variables 
for each of the clusters and then repeated the analysis shown 
in Equation 1, replacing the posterior probabilities with these 
indicator variables.
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RESULTS

Study Participants and Descriptive Statistics
Our study population consisted of 517 mother–child 

pairs with complete information on all 27 biomarkers and 
complete WPPSI-III scores (Table  1; Table  2; eFigure 1; 
http://links.lww.com/EDE/B972). When we compared our 
sample to the average Canadian mother, as measured by 
Statistics Canada in 2011, we found that our participants 
tended to be older (41% ≥35), more likely to be White 
(86%), with higher socioeconomic status (68% with under-
graduate degree or higher; 41% with a household income 

of ≥$100,000/year) and lower self-reported prenatal smok-
ing (9%) and alcohol consumption rates (17%; Table  2).55 
Our study population included participants in Vancouver, 
Toronto, Hamilton, Kingston, Montreal, and Halifax. The 
largest proportion came from Montreal or Kingston (24% 
each) and the smallest from Vancouver (9%). These patterns 
were similar to those in the original MIREC cohort.25 Mean 
IQ scores were higher in females and children with White, 
educated, low-parity, or nonsmoking mothers, or those who 
had higher HOME scores or tested in Vancouver or Hamilton 
(eTable 1; http://links.lww.com/EDE/B972). Self-reported 

TABLE 1.  Distribution of Gestational Chemical Biomarkers in Participating Mothers in the MIREC Study During Their First Tri-
mester of Pregnancy, Compared to the Geometric Mean Concentrations Found in the Canadian Mothers in Cycle 1  
(2007–2009) of the CHMS (n = 517)36

Toxicant
% >LOD GM (GSD)

Percentiles CHMS GM

25th 50th 75th 95th Max  

Metals—whole blood (ug/L)  

  Arsenic 96.5 0.8 (2.0) 0.6 0.8 1.2 2.3 34.5 0.9

  Cadmium 97.5 0.2 (2.1) 0.1 0.2 0.3 0.7 5.1 0.4

  Lead 100.0 6.4 (1.6) 4.6 6.2 8.5 14.1 41.4 8.9

  Manganese 100.0 8.7 (1.4) 7.1 8.8 10.4 13.7 26.9 9.8

  Mercury 91.5 0.6 (2.7) 0.4 0.7 1.3 2.8 7.8 0.7

OCPs—plasma (ng/L)  

  β-HCH 64.0 2.3 (2.7) < LOD 2.1 3.4 9.0 500.0 4.8

  DDE 99.2 55.23 (2.2) 35.7 49.1 77.1 214.6 2,656.3 102.2

  Oxychlor 92.8 2.0 (1.8) 1.5 2.2 3.0 4.5 8.4 2.3

  trans-nonachlor 85.7 2.9 (1.8) 2.0 3.0 4.3 7.4 18.3 3.1

OPPs—urine (ug/L)  

  DEP 73.1 2.6 (2.3) < LOD 2.5 4.2 9.8 2,104.8 2.0

  DETP 49.1 0.7 (2.5) < LOD < LOD 1.2 3.1 15.6 NA

  DMDTP 53.0 0.5 (3.6) < LOD 0.5 1.1 4.8 22.5 NA

  DMP 77.4 3.2 (2.7) 1.8 3.3 6.2 14.7 71.5 2.6

  DMTP 80.7 3.6 (4.0) 1.4 3.9 8.9 30.6 96.2 1.8

Phthalates—urine (ug/L)  

  MnBP 99.6 12.6 (2.3) 7.8 12.1 19.2 47.1 525.9 18.0

  MBzP 99.4 5.4 (2.5) 3.1 4.8 9.1 25.3 182.0 9.3

  MCPP 80.3 0.9 (3.3) 0.5 0.9 1.7 7.2 72.0 1.1

  MEP 100.0 33.2 (4.0) 12.4 26.0 71.5 416.0 20,800.0 50.0

  DEHP sum (nmol/L) NA 18.6 (2.1) 12.5 18.1 26.4 63.8 550.6 NA

PCBs—plasma (ng/L)  

  PCB118 77.0 2.4 (1.9) 1.7 2.5 3.4 6.6 30.2 3.1

  PCB138 94.2 4.5 (2.0) 2.9 4.5 6.6 15.1 46.8 5.5

  PCB153 99.8 8.0 (2.0) 5.0 7.6 11.8 27.9 80.9 8.2

  PCB170 58.8 2.0 (2.2) < LOD 2.0 3.1 8.1 40.3 NA

  PCB180 96.7 5.5 (2.2) 3.2 5.3 8.4 21.2 114.9 5.8

  PCB187 47.2 1.7 (2.0) < LOD < LOD 2.5 5.7 26.9 NA

PBDEs—plasma (ng/L)  

  BDE47 65.0 7.3 (2.7) < LOD 6.8 11.7 38.1 727.3 10.8

Tobacco metabolites—plasma (ng/L)  

  Cotinine 54.4 7.7 (11.8) <LOD 6.5 20.0 270.0 180,000.0 NA

OCPs, PCBs, and PBDEs are standardized using total lipids, and OPPs and phthalates are standardized using specific gravity.
DDE indicates dichlorodiphenyldichloroethylene; DEP, diethylphosphate; DETP, diethylthiophosphate; DMDTP, dimethyldithiophosphate; DMP, dimethylphosphate; DMTP, 

dimethylthiophosphate; GM, geometric mean; GSD, geometric standard deviation; MBzP, monobenzyl phthalate; MCPP, mono-(3-carboxypropyl) phthalate; MnBP, monobutyl phthal-
ate; NA, not available; β-HCH, β-benzene hexachloride.
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prenatal alcohol consumption and frequency of prenatal 
drinking were positively associated with child IQ. However, 
given the low levels of alcohol consumption in mothers who 
reported prenatal drinking (median = one drink per month), 
this may have been driven by socioeconomic factors. Finally, 
the geometric mean biomarker concentrations in our sample 

were similar to those in cycle 1 of the CHMS (2007–2009; 
Table 1).43

Latent Profile Analysis
We created a heat map showing the correlation 

between pairs of log2-transformed biomarkers (Figure  1). 

TABLE 2.  Demographic Characteristics for Total Study Population and for Participants in Each Profile

Demographic 
Category

Total (%) Reference (%) High MEP (%) High POP (%) Low POP (%) Smoking Chemicals (%)

N = 517 N = 314 N = 136 N = 30 N = 19 N = 18

Child sex

  Male 49 49 51 53 26 50

  Female 51 51 49 47 74 50

Maternal age

  19–30 21 12 32 13 58 44

  30–35 39 41 40 30 21 22

  35+ 41 46 28 57 21 33

Maternal race

  White 86 88 83 80 79 89

  Other 14 12 17 20 21 11

Maternal education

  High school 5 1 10 7 26 22

  College 27 26 30 23 26 39

  Undergraduate 38 39 37 40 47 39

  Graduate 29 34 24 30 0 0

Marital status

  Married 72 73 76 70 53 56

  Unmarried 28 27 24 30 47 44

Household income (Canadian Dollars)

  < 40,000 9 7 9 10 26 33

  40,000–80,000 29 28 30 33 32 22

  80,000–100,000 21 21 23 13 26 11

  > 100,000 41 44 38 43 16 33

Parity

  Zero 44 43 45 37 42 50

  One 41 44 36 50 26 33

  Two 12 11 13 13 16 17

  Three or more 3 2 7 0 16 0

Prenatal smoking

  No 91 96 90 93 100 11

  Yes 9 4 10 7 0 89

Prenatal alcohol

  No 83 82 87 90 89 61

  Yes 17 18 13 10 11 39

HOME score quartile

  1st 26 22 30 37 37 44

  2nd 28 28 27 30 26 17

  3rd 22 24 21 17 16 17

  4th 24 26 22 17 21 22

Test site

  Vancouver 9 11 4 20 5 6

  Toronto 10 12 7 7 0 6

  Hamilton 13 12 15 13 21 6

  Kingston 24 21 29 13 26 39

  Montreal 24 24 22 43 32 22

  Halifax 20 20 22 3 16 22
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We found high correlation between chemicals in the same 
group, particularly in the OCPs, OPPs, PCBs, and phthal-
ates. There was also correlation between certain chemicals 
in different groups; the PCBs, OCPs, and most of the met-
als were correlated with one another, as were cotinine and 
cadmium.

For the latent profile analysis, we generated 36 mod-
els in total (eTable 3; http://links.lww.com/EDE/B972). The 
AIC got steadily lower with increasingly complex models, 
with the lowest value for a model with 12 profiles, and was 
therefore not used for model choice. The BIC was lowest in 
models with equal variance and covariance. Of these, the 
two models with the lowest BIC had five profiles (BIC = 
39,625) and eight profiles (BIC = 39,566). Both of these 
profiles had entropy values above 0.8 (0.885 and 0.899, 
respectively). The five-profile model was chosen for the sake 
of interpretation, which gets more difficult as the number of 
profiles increases. When we examined this model, we found 
that it contained a reference profile, which had z-scores of 
biomarker concentrations close to zero; a high monoethyl 
phthalate (MEP) and moderately low persistent organic 
pollutant (POP) profile (for brevity’s sake, we will call this 
the high MEP profile), which had moderately low concen-
trations of all chemicals except for phthalates and slightly 
higher levels of MEP; a high POP profile, which had very 
high concentrations of PCBs; a low POP profile, which had 
very low concentrations of PCBs and OCPs; and a smoking 

chemicals profile, which had high concentrations of coti-
nine and cadmium biomarkers. We examined the number 
of people who most closely matched each group and found 
that it varied between profiles, with the reference and high 
MEP profiles being larger (n = 314 and 136, respectively) 
and high POP, low POP, and smoking chemicals profiles 
being smaller (n = 30, 19, and 18, respectively). There was 
high variance of PCB and cotinine concentrations between 
the five profiles, and lower variance in the other chemical 
groups (Figure 2). Mothers in the three smaller profiles had 
high average posterior probabilities (mean >0.98), whereas 
mothers in the reference and high MEP profiles had lower 
average posterior probabilities (mean = 0.92 and 0.89, 
respectively).

The high POP profile had older, non-White moth-
ers (eTable 5; http://links.lww.com/EDE/B972). The low 
POP profile had younger, non-White, unmarried mothers 
with lower socioeconomic status, many of whom tested 
from Montreal and Hamilton, and who gave birth to a 
higher proportion of girls. The smoking chemicals profile 
had younger, non-White, unmarried mothers with lower 
household income and education and higher levels of active 
smoking, although not all mothers in this profile reported 
prenatal smoking.

Regression Analysis of the Latent Profiles
The high MEP and smoking chemicals profiles were 

negatively associated with all three scores in all children 
when compared to the reference profile (FSIQ: –1.7 [–4.8, 
1.4] and –2.6 [–8.8, 3.7], respectively), although the smok-
ing chemicals profile showed a much higher association 
in female children and more neutral associations in male 
children (Figure 3). The high POP profile showed negative 
associations with VIQ (–1.8 [–6.3, 2.8]) but neutral asso-
ciations with PIQ (0.0 [–5.4, 5.4]). In the low POP profile, 
we found a positive association with PIQ scores (4.5 [–2.5, 
11.5]) but a negative association with VIQ scores (–2.0 
[–7.9, 3.9]). For all regression coefficients, the 95% confi-
dence intervals covered the null value. However, the effect 
estimates were often much higher than those of the individ-
ual chemicals we studied (eTable 2; http://links.lww.com/
EDE/B972 and eTable 4; http://links.lww.com/EDE/B972). 
We found no statistically significant interactions between 
latent profiles and child sex.

Sensitivity Analysis Comparing Latent Profile 
Analysis and K-means Clustering

Using k-means clustering, we found that 5–8 clusters 
were most appropriate. We chose a model with five clusters 
to compare with the latent profile analysis results. Four of 
the clusters were similar to the profiles generated by latent 
profile analysis; Figure 4 shows a cluster with low- to mid-
level biomarker concentrations, one with high biomarker con-
centrations, one with low biomarker concentrations except 
for the phthalates (in this case, phthalates were all relatively 

FIGURE 1.  Pearson correlation heat map of 27 log2-trans-
formed chemicals measured in participating mothers in the 
MIREC study during their first trimester of pregnancy (n = 
517). BDE indicates brominated diphenyl ether; DDE, dichlo-
rodiphenyldichloroethylene; DEP, diethylphosphate; DETP, 
diethylthiophosphate; DMDTP, dimethyldithiophosphate; 
DMP, dimethylphosphate; DMTP, dimethylthiophosphate; 
MBzP, monobenzyl phthalate; MCPP, mono-(3-carboxypropyl) 
phthalate; MnBP, monobutyl phthalate; β-HCH, β-benzene 
hexachloride.
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high), and one with high concentrations of smoking chemi-
cals. However, the cluster counterpart for the low POP profile 
showed a pattern of higher OPPs and was named the high OPP 
cluster to reflect this. There were other key differences between 
the profiles and clusters as well. First, the reference, phthal-
ates, high POP, and high OPP clusters were all similar sizes (n 
= 115, 133, 111, 140, respectively); in contrast, the smoking 
chemicals cluster was smaller (n = 18; eTable 5; http://links.
lww.com/EDE/B972). This contrasts with the latent profile 
analysis results, which had much larger reference and high 
MEP profiles (n = 314 and 136) and much smaller high POP, 
low POP, and smoking chemicals profiles (n = 30, 19, and 
18). Second, the z-scores for the PCB concentrations in the 
high POP and low POP/high OPP clusters were much closer 
to zero than in their profile counterparts (Figure 4). Finally, 

the reference profile had exposure biomarker concentration 
z-scores that were closer to zero.

When we conducted covariate-adjusted linear regres-
sion analysis, we found that the smoking chemicals clus-
ter was negatively associated with all WPPSI-III scores, 
although 95% confidence intervals crossed the null (FSIQ: 
–4.1 [–10.5, 2.3]; eFigure 3; http://links.lww.com/EDE/
B972). These associations were slightly greater than those 
found in the smoking chemicals profile and were not sex-spe-
cific. The High POP cluster had negative associations with 
all three scores (FSIQ: –1.4 [–4.8, 2.0]). Unlike in its profile 
counterpart, there were significant sex-specific associations 
in this cluster for VIQ (sex interaction: P = 0.007) and FSIQ 
(sex interaction: P = 0.040). The High OPP cluster showed 
sex-specific associations with all three IQ scores; cluster 

FIGURE 2.  Mean log2-transformed chemical compositions of the five profiles generated by latent profile analysis, separated by 
chemical group, with boxes showing standard deviation (n = 517). As indicates arsenic; BDE, brominated diphenyl ether; Cd, 
cadmium; DDE, dichlorodiphenyldichloroethylene; DEP, diethylphosphate; DETP, diethylthiophosphate; DMDTP, dimethyldithio-
phosphate; DMP, dimethylphosphate; DMTP, dimethylthiophosphate; Hg, mercury; MBzP, monobenzyl phthalate; MCPP, mono-
(3-carboxypropyl) phthalate; Mn, manganese; MnBP, monobutyl phthalate; Pb, lead; β-HCH, β-benzene hexachloride.
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membership was negatively associated with IQ in boys but 
had a positive or more weakly negative association with IQ 
in girls (FSIQ: –1.4 [–6.5, 3.6] and –0.1 [–3.6, 4.7], respec-
tively; sex interaction for VIQ, PIQ, and FSIQ: P = 0.007, 
0.022, and 0.002, respectively). The phthalate cluster had a 
weak positive association with VIQ (0.4 [–2.7, 3.5]) and neg-
atively associated with PIQ (–2.2 [5.9, 1.4]) and showing no 
sex-specific associations.

DISCUSSION
Using latent profile analysis, we generated five latent 

profiles that showed risk stratification of chemical mixtures 
in pregnant women: a high MEP profile, a high POP profile, 
a low POP profile, a smoking chemicals profile, and a refer-
ence profile with biomarker concentrations close to zero. We 
elected to use the medium level profile as a reference for the 
regression analysis because of its large size, which indicates 

that this profile may have acted as a catch-all group for moth-
ers who did not fit any of the other patterns.

Overall, when compared to the reference profile, we 
found negative associations between IQ scores and two of our 
profiles: the high MEP profile, and smoking chemicals pro-
file, although all 95% confidence intervals spanned the null. 
However, the associations between the smoking chemicals pro-
file and IQ were mostly found in female children. Although 
previous studies have found differing effects of neurotoxicants 
on girls and boys, more research is needed to understand the 
complex dynamic between gestational smoking, neurodevel-
opment, and child sex.1,3,8 The high POP and low POP pro-
files had differing associations with VIQ and PIQ. The high 
POP profile had a negative association with VIQ and FSIQ, 
but neutral associations with PIQ. In the low POP profile, we 
found the more expected positive association with PIQ and an 
unexpected negative association with VIQ. Previous studies 

FIGURE 3.  Covariate-adjusted linear regression coefficients showing the associations between latent profile membership and 
WPPSI-III scores, adjusted for maternal age, race, education, and marital status, household income, parity, prenatal alcohol, HOME 
score, and testing city compared to the Reference Profile, with 95% confidence intervals. Results are shown for all children, and 
then stratified by sex. We found no significant interactions between latent profiles and child sex (all P > 0.05; n = 517).
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have shown negative relationships between PCBs and VIQ, but 
not PIQ, making this result even more surprising.56,57 However, 
two noteworthy factors are the size and the sex distribution 
of this profile; only 19 children most closely matched it, of 
whom 74% were girls. To solve these problems, further study 
is needed with a larger population, and more research is needed 
to determine why differences in associations with PIQ and VIQ 
can occur.58–61

When we conducted sensitivity analysis using k-means 
clustering, we found that the five clusters had similar patterns 
to the profiles, albeit less pronounced and with higher levels of 
OPPs in the low POP cluster. We found that k-means clustering 
had three main disadvantages: the unclear method of choos-
ing a model, the tendency towards choosing clusters of the 
same size, and the nonprobabilistic nature of cluster assign-
ment.29,30 We chose the model with five clusters because that 
was the number of profiles latent profile analysis generated; 
however, this would have been a more difficult decision had 
we not started with latent profile analysis. All but the smok-
ing chemicals cluster were similar in size, which was to be 
expected given the method’s bias towards equal clusters.29,30 
This may have resulted in lower classification accuracy, which 
we could not easily assess because this method does not 

generate posterior probabilities. We therefore conclude that, 
although more research is needed to assess its capabilities, 
latent profile analysis should be considered for studying the 
effects of gestational chemical mixtures.

This study builds on other work that has used unsu-
pervised machine learning techniques to estimate the health 
effects of chemical mixtures. Several similar studies have been 
done using k-means clustering, which is why we chose this 
method for sensitivity analysis.2,25,27,62 Kalloo et al.2,63 used 
k-means clustering and PCA to study the effects of chemical 
mixtures on child IQ. Unlike in our study, they found that the 
ideal model had three clusters. IQ scores were negatively asso-
ciated with the clusters with higher concentrations of metals, 
phthalates, phenols, and pesticides. While these results can 
not be directly compared with our study, as the mixtures in 
each cluster are different than those in our profiles, there are 
some similarities. For example, VIQ and PIQ were not always 
associated with clusters in the same way; the cluster with 
the lowest overall biomarker concentrations (cluster 3) had a 
higher PIQ and a lower VIQ than the cluster with the high-
est concentrations (cluster 1). We found similarly inconsistent 
results in our low POP profile.

Another popular technique that has been used to study 
gestational mixtures is hierarchical clustering, a dimension 
reduction technique by which chemical exposures can be par-
titioned into groups.6,64 For example, in 2020, Mehta et al.16 
used hierarchical clustering and PCA to study associations 
between gestational exposure mixtures and sociodemographic 
variables. Like with latent profile analysis, this method does 
not require one to predetermine the number of groups; how-
ever, a key difference is that in this study, the researchers par-
titioned exposure variables, whereas we were interested in 
clustering the participants to find associations with chemical 
mixtures as a whole.

Other studies have also used latent groups created using 
chemical mixtures. Carroll et al.23 used latent class analysis, 
a similar method to latent profile analysis that uses categori-
cal independent variables, to study phthalate and phenols.65 
However, chemical exposures had to be dichotomized for this 
study. Had we chosen to use latent class analysis, we could not 
have differentiated the profiles nearly as well, and would have 
missed information about profiles with moderate biomarker 
concentrations. In 2018, Hendryx and Luo24 used latent class 
analysis to study 47 chemical biomarkers from six chemi-
cal groups in children 6–19 years old. They separated their 
participants into three classes, assigning each participant to 
a single class based on their posterior probabilities and then 
regressing class membership against lymphocyte and neutro-
phil counts. In this study, the number of classes and exposure 
patterns were different in these groups than in our profiles, 
perhaps due to the different sociodemographic characteristics 
in our respective study populations. Finally, a recent study by 
Khorrami et al.22 used latent profile analysis to find associa-
tions between mixtures of air pollutants and lung cancer. In 

FIGURE 4.  Sensitivity analysis comparing latent profile analy-
sis results with k-means clustering results, showing z-scores for 
the mean biomarker concentrations in each latent profile (left) 
and k-means cluster (right; n = 517). High concentrations are 
shown in red, low concentrations in blue. As indicates arsenic; 
BDE, brominated diphenyl ether; Cd, cadmium; DDE, dichlo-
rodiphenyldichloroethylene; DEP, diethylphosphate; DETP, 
diethylthiophosphate; DMDTP, dimethyldithiophosphate; 
DMP, dimethylphosphate; DMTP, dimethylthiophosphate; 
Hg, mercury;  LPA, latent profile analysis; MBzP, monobenzyl 
phthalate; MCPP, mono-(3-carboxypropyl) phthalate; Mn, 
manganese;  MnBP, monobutyl phthalate; Pb, lead;  β-HCH, 
β-benzene hexachloride.
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this study, however, the researchers used a different combina-
tion of chemicals than we did, and pollutant concentrations 
were ascertained using geographical location, not gestational 
biomarkers.

Our study has several limitations. The first is that moth-
ers in the MIREC cohort are more likely to be older, wealthier, 
educated, and White and also have lower rates of self-reported 
prenatal smoking and alcohol use than the average Canadian 
who gave birth that year.32 This trend is found in both the orig-
inal MIREC study participants and in our study population. 
Therefore, we may not be accurately reflecting the exposure 
patterns found in other populations, which limits this study’s 
generalizability. Second, some chemicals had a lower detection 
rate, and the imputation method we used may have underesti-
mated the variance for these chemicals.39 Third, exposure mis-
classification for nonpersistent chemicals may have affected 
the analysis results.15 Fourth, because this study was primar-
ily focused on prenatal exposures, we did not account for 
postnatal factors such as breastfeeding duration, which may 
have acted as an effect modifier in the associations between 
chemical exposure and IQ.28 Fifth, because the information 
was not available, we were unable to adjust for parental IQ, 
an important indicator of child IQ. Finally, although the sensi-
tivity analysis with k-means clustering showed approximately 
the same groups as those of the latent profile analysis within 
the same sample, no comparison has been made with other 
samples. If changes were made to the number of participants, 
the chemical exposures variables, or the study population as 
a whole, different profiles may be generated. This would also 
occur if we split our data, especially given the small size of 
several of our profiles. Our results are informative for study-
ing associations between these specific chemical mixtures and 
various outcomes, but further study is needed to determine the 
reproducibility of our profiles. That said, despite these limita-
tions, we believe that latent profile analysis is a promising tool 
that is worthy of more studies in complex exposure scenarios.

In conclusion, we recommend the use of latent profile 
analysis as a potential technique for studying chemical mix-
tures. Although further research is needed to understand the 
method’s capabilities, we believe that this is an effective alter-
native to other clustering methods. This technique can find 
patterns in large, complex datasets while avoiding many of 
the disadvantages of k-means clustering or multiple regres-
sion analysis, and it generates a helpful new variable that can 
be used to study the effects of chemical mixtures on health 
outcomes.
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