
American Journal of Epidemiology
© Her Majesty the Queen in Right of Canada, as represented by the Minister of Health, 2021.

Vol. 190, No. 9
https://doi.org/10.1093/aje/kwab065

Advance Access publication:
March 29, 2021

Original Contribution

Association Between Gestational Exposure to Toxicants and Autistic Behaviors
Using Bayesian Quantile Regression

Joshua D. Alampi∗, Bruce P. Lanphear, Joseph M. Braun, Aimin Chen, Tim K. Takaro,
Gina Muckle, Tye E. Arbuckle, and Lawrence C. McCandless∗
∗ Correspondence to Dr. Lawrence McCandless, Faculty of Health Sciences, Simon Fraser University, 8888 University Drive,
Burnaby, BC, V5A 1S6, Canada (e-mail: lmccandl@sfu.ca).

Initially submitted July 29, 2020; accepted for publication March 11, 2021.

Autism spectrum disorder, which is characterized by impaired social communication and stereotypic behaviors,
affects 1%–2% of children. Although prenatal exposure to toxicants has been associated with autistic behaviors,
most studies have been focused on shifts in mean behavior scores. We used Bayesian quantile regression to
assess the associations between log2-transformed toxicant concentrations and autistic behaviors across the
distribution of behaviors. We used data from the Maternal–Infant Research on Environmental Chemicals study, a
pan-Canadian cohort (2008–2011).We measured metal, pesticide, polychlorinated biphenyl, phthalate, bisphenol-
A, and triclosan concentrations in blood or urine samples collected during the first trimester of pregnancy. Using
the Social Responsiveness Scale (SRS), in which higher scores denote more autistic-like behaviors, autistic
behaviors were assessed in 478 children aged 3–4 years old. Lead, cadmium, and most phthalate metabolites
were associated with mild increases in SRS scores at the 90th percentile of the SRS distribution. Manganese and
some pesticides were associated with mild decreases in SRS scores at the 90th percentile of the SRS distribution.
We identified several monotonic trends in which associations increased in magnitude from the bottom to the top of
the SRS distribution. These results suggest that quantile regression can reveal nuanced relationships and, thus,
should be more widely used by epidemiologists.

autism; Bayesian statistics; children; endocrine-disrupting chemicals; quantile regression

Abbreviations: ASD, autism spectrum disorder; CI, confidence interval; DEHP, di(2-ethylhexyl) phthalate; MCPP, mono-3-carbo-
xypropyl phthalate; MEP, mono-ethyl phthalate; MIREC, Maternal–Infant Research on Environmental Chemicals; PCB, poly-
chlorinated biphenyl; SRS, Social Responsiveness Scale.

Autism spectrum disorders (ASDs), a spectrum of neu-
rodevelopmental disorders affecting 1%–2% of children, are
distinguished by social impairments and repetitive behaviors
(1, 2). Although ASD diagnosis is relatively uncommon, all
children demonstrate varying degrees of autistic behaviors
(3). Genetics is an important risk factor for ASD, but it
cannot explain ASD etiology entirely (4–6). A growing body
of research shows that environmental factors, especially
those that affect the developing fetus, play an important role
in ASD (2).

The impact of toxicants on ASD diagnosis and autistic
behaviors (measured with the Social Responsiveness Scale
(SRS)) varies across studies. Several studies have linked cer-
tain phthalate metabolites (7–11), polychlorinated biphenyl

(PCB) congeners (12–15), and certain organochlorine pesti-
cides (13–16) with ASD diagnosis or autistic behaviors, but
a consensus has yet to emerge. The associations of bisphenol-
A with autistic behaviors are mixed, although it has been
shown to affect neurodevelopment (10, 13, 17, 18). Although
lead and mercury have been linked with ASD in some
studies, there is less research on their associations with ASD
at lower concentrations (19–22). It is unclear whether organ-
ophosphate pesticides are associated with ASD, but they
are associated with neurodevelopmental outcomes (23–25).
There is insufficient research on the associations between tri-
closan and ASD, but some evidence suggests triclosan may
be associated with aspects of neurodevelopment, like a child’s
intelligence quotient or externalizing behaviors (26–28).
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Epidemiologists frequently use ordinary least squares re-
gression (e.g., linear regression) to report the average asso-
ciation between variables. In contrast, quantile regression
is used to assess the relationship between exposure and the
dependent variables for specified quantiles of the dependent
variable’s distribution (29–33). This alternative approach
can detect associations that would have gone unnoticed
had one only modeled the average associations (29, 30).
Using quantile regression, Magzamen et al. (34) found that
childhood lead exposure had the strongest impact on read-
ing and math test scores in children with the lowest test
scores. Meanwhile, the average associations were weaker.
Quantile regression has been used elsewhere in environmen-
tal epidemiology, particularly in air pollution studies (35–
40).

We set out to systematically analyze the relationships of
exposure to an array of toxicants during the first trimester
of pregnancy with ASD-associated behaviors in preschool-
aged children in a Canadian birth cohort, using Bayesian
quantile regression.

METHODS

Study participants

We used data from the Maternal–Infant Research on Envi-
ronmental Chemicals (MIREC) Study, a pregnancy cohort
from 10 Canadian cities. Study staff recruited women during
the first trimester of pregnancy between 2008 and 2011.
Eligibility criteria included being at least 18 years old, being
able to communicate in French or English, and consenting
to cord blood collection. We excluded women who carried
a fetus with a known abnormality, had a major chronic
disease, used illicit drugs, or threatened abortion (41). We
approached 8,716 women, of whom 5,108 (59%) were eligi-
ble, and 1,861 (36%) provided consent and delivered single-
ton live births. Follow-up was restricted to 7 of the 11 study
sites for logistical and financial reasons. In children born
to the cohort of women, we measured child development
outcomes in a convenience subsample of 600 when they
were 3–4 years old. We further restricted our analysis to
mothers who had complete information on the confounders
and toxicants included in our analysis (Web Figure 1) (avail-
able at https://doi.org/10.1093/aje/kwab065).

This research was approved by ethics review boards from
the University Hospital of Quebec, Health Canada, Sainte-
Justine Research Center, and Simon Fraser University. All
women provided informed consent for their own and their
child’s participation in the study.

Biomarkers of toxicant exposure

Biospecimens were stored at −20◦C before being ana-
lyzed using gas chromatography/mass spectrometry at the
Institut national de santé publique du Québec’s toxicology
laboratory using previously described methods (42–45).
We measured toxicant concentrations during the first tri-
mester of pregnancy (6–13 weeks’ gestation) and included
the 25 that were detectable in more than 60% of our
sample (excluded toxicants are listed in Web Appendix 1).

This included metals, measured in whole blood; organochlo-
rine pesticides and PCBs measured in in plasma; and organo-
phosphate pesticides, phthalates, bisphenol-A, and triclosan,
measured in in urine. We quantified free plus conjugated
bisphenol-A and triclosan concentrations using analytical
chemistry methods described by Arbuckle et al. (44, 45).
Concentrations below the limit of detection were esti-
mated using single imputation. The mean and standard
deviation of a truncated lognormal distribution were esti-
mated for each toxicant, using existing data (with below the
limit of detection concentrations being temporarily assigned
a concentration of the limit of detection divided by

√
2 to

allow for a more accurate distribution). Concentrations
below the limit of detection were randomly assigned from
this distribution (46).

To address the high correlation between certain toxicants,
we calculated their molar sum. We did this for 4 PCB con-
geners: PCB118, PCB138, PCB153, and PCB180 (Pearson
r = 0.56–0.95; 2-sided P < 0.01), and for 3 di(2-ethylhexyl)
phthalate (DEHP) metabolites: mono-(2-ethyl-5-hydroxy-
hexyl) phthalate, mono-(2-ethylhexyl) phthalate, and mono-
(2-ethyl-5-oxo-hexyl) phthalate (r = 0.79–0.97; P < 0.01)
(Web Figure 2). Because these individual DEHP metabolites
are derived from the same parent compound (7), we did
not include these individual metabolites in our analysis.
Because plasma-lipid concentrations affect the concentra-
tion of lipophilic toxicants in blood tests (47), we divided
the concentrations of organochlorine pesticides and PCBs
by maternal lipid concentrations. Furthermore, we addressed
variability in urine dilution for the toxicants measured in the
urine by standardizing by specific gravity using the follow-
ing formula: Cstan = C×[(1.015−1)÷(SG−1)], where Cstan
denotes an individual mother’s standardized concentration,
C denotes the unstandardized concentration, SG represents
an individual mother’s specific gravity reading, and 1.015
was the median specific gravity among study participants
(48).

Autistic behaviors

When participating children were 3–4 years old (median,
40 months old), 1 parent of each child completed the
preschool-aged version of the Social Responsiveness Scale-
2 (SRS-2) questionnaire (Western Psychological Services,
Torrance, California), which consists of 65 Likert-scale
queries (49, 50). The sum of these responses gives a child’s
T-score, with higher scores indicating a greater number and
intensity of ASD-like behaviors (3). The SRS is a valid
and reliable measure of reciprocal social, repetitive, and
stereotypic behaviors that are typically seen in ASD (50–
53). The SRS also can be used to accurately assess autistic
behaviors in a nonclinical population, making it well suited
for population cohort studies like ours (3).

Confounders

We conducted background research to identify factors that
confound the relationship between gestational exposure to
toxicants and SRS scores and created a directed acyclic
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graph to visualize our assumptions (Web Figure 3) (2, 6,
54–56). We adjusted for the following: child sex, folic acid
supplementation, caregiver environment score, household
income, relationship status, maternal ethnicity, age, educa-
tion, parity, and city of residence (see Web Table 1 for more
details). This information was collected via questionnaires
administered upon study enrollment. Caregiver environment
scores, a systematic assessment of the caring environment in
which a child is reared, were determined using the Home
Observation for Measurement of the Environment test at
the childhood follow-up. These scores were determined by
in-home observations and interviews with the child’s care-
giver(s) conducted by a trained interviewer (57).

Statistical analysis

Toxicants may not have equal associations with SRS
scores along the entire distribution of SRS scores (30, 32).
Thus, we used Bayesian quantile regression to determine
the relationship between gestational exposure to toxicants
and child SRS scores throughout the SRS distribution. We
created separate models for each individual toxicant (or
group of correlated toxicants, i.e., the sum of the PCBs
and the sum of the DEHPs), and for each of the following
quantiles of the SRS distribution (denoted by the Greek letter
τ): 0.1, 0.3, 0.5, 0.7, and 0.9. Thus, our estimands were the
change in SRS score per 2-fold increase in concentrations
at the 10th (lowest), 30th, 50th, 70th, and 90th (highest)
percentiles of SRS scores. For comparison purposes, we also
created frequentist linear regression models to assess the
average change in SRS score per 2-fold increase in toxicant
concentrations. We plotted both sets of results alongside
each other to allow for easy comparisons, even though linear
regression uses 95% confidence intervals and Bayesian
quantile regression uses 95% posterior credible intervals.
All analyses were adjusted for confounders, performed
with R, version 3.6.2 (R Foundation for Statistical Com-
puting, Vienna, Austria), and with the package “bayesQR”
(29).

Our implementation of Bayesian quantile regression used
an asymmetric Laplace working likelihood with identical
and independently distributed error terms (29, 58). We used
the default vague prior that came with the bayesQR pack-
age (29). We sampled from the posterior distribution of
regression coefficients using Markov chain Monte Carlo
methods with 27,000 iterations and the initial 2000 iter-
ations discarded. The model is further described in Web
Appendix 2. This model assumes 1) there is a homoscedastic
relationship between each toxicant and SRS scores; 2) the
relationship between each toxicant and SRS scores at 1
quantile of the SRS distribution is independent of any other
quantile; and 3) there is a linear dose–response relationship
between each SRS quantile and log2-transformed toxicant
concentrations (29). To test the first assumption, we used a
Breusch-Pagan test to detect the toxicants with statistically
significant deviations from homoscedasticity (59). Next, the
posterior variance correction of Yang et al. (60) was applied
to these toxicants, which adjusted their 95% posterior credi-
ble intervals to account for violations of the first assumption
(Web Appendix 2).

We opted to use a Bayesian approach to quantile regres-
sion because the frequentist approach to point and interval
estimation, which comes from the “quantreg” package (61),
was unsuitable for our data. Frequentist quantile regression
assumes that the dependent variable has a smooth (non-
granular) distribution (37). This is not the case for SRS
scores, which can only take on whole number values. This
unmet assumption caused error messages and implausible
results. For this reason, researchers who wish to use quan-
tile regression with a dependent variable with ties should
consider using a Bayesian approach instead (37). We did
not adjust our findings for multiple comparisons. Doing
so would decrease type I errors but increase type II errors
(62). Because it is certainly plausible that gestational expo-
sure to toxicants will be associated with SRS scores (7–
28), we deemed this to be an inappropriate tradeoff (62).
Furthermore, parameter estimation was prioritized over null
hypothesis significance testing.

Supplementary and exploratory analyses

Because child sex has been shown to modify the asso-
ciations of certain toxicants, and ASD is more common in
boys (2, 8, 13), we repeated our primary analysis stratifying
by sex. We also performed a supplementary analysis adjust-
ing for self-reported smoking during pregnancy. Next, we
repeated our primary analysis removing outlier concentra-
tions in each toxicant. Outliers were defined using Tukey
fences with k = 1.5 (63). The relationship between gesta-
tional exposure to toxicants and SRS scores may be nonlin-
ear. Accordingly, we conducted a supplementary analysis in
which the range of toxicant concentrations was divided into
quartiles, and the change in the SRS score was measured
by comparing the bottom (first) quartile with the other 3
quartiles. There is some uncertainty about the validity of
single imputation with toxicants that are detectable less than
70% of the time (46). To examine the performance of single
imputation on 4 toxicants that were detectable 50%–70%
of the time, we repeated single imputation 10 times and
analyzed each of these imputations as described earlier in
this section.

RESULTS

Descriptive statistics

Of the 600 mother–child pairs for which SRS scores were
measured, 478 (79.7%) were included in our analysis. We
excluded 89 for missing data on 1 or more of the toxicants,
and an additional 33 were removed for missing data on con-
founders (Web Figure 1). These excluded mothers who were
younger and less likely to live with their partner than were
the mothers in our sample (Table 1). Most of the mothers
in our sample were nonsmokers (91%), aged 30 years or
older (80%), had at least an undergraduate degree (68%), and
had an annual household income of at least $80,000 (61%)
(Table 1). Ten (2.1%) of the children in our sample had an
SRS T-score of 60 or higher, indicating at least mild autistic
behaviors (51). The distribution of SRS scores is depicted
in Web Figure 4. SRS scores were higher in children with
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Table 1. Sociodemographic Characteristics of MIREC Study Participants With In-Person Follow-Up Who Were and Were Not Included in Our
Sample (n = 600), Canada, 2008–2011

Characteristic

Included Excluded

No. % Mean SRS
Score (SD)

No. % Mean SRS
Score (SD)

P Value

Total 478 100 45.3 (5.9) 122 100 45.5 (6.8)

Child sex 0.387

Male 235 49.2 46.4 (6.2) 54 44.3 47.7 (8.0)

Female 243 50.8 44.3 (5.4) 68 55.7 43.7 (5.1)

Mother’s age at enrollment, years 0.034a

18–24 7 1.5 45.6 (6.3) 7 5.7 53.4 (2.2)

25–29 88 18.4 46.1 (5.3) 29 23.8 47.2 (5.8)

30–34 189 39.5 45.5 (6.3) 45 36.9 45.1 (7.7)

35–39 155 32.4 44.9 (5.9) 33 27.0 42.9 (5.6)

≥40 39 8.2 44 (4.7) 8 6.6 44.6 (6.0)

Living with spouse >0.001a

Yes 468 97.9 45.2 (5.8) 111 91.0 45.1 (6.7)

No 10 2.1 48.5 (8.3) 11 9.0 49.1 (6.7)

Maternal race 0.195

White 433 90.6 45.1 (5.9) 105 86.1 45.5 (7.0)

Other 45 9.4 47.7 (5.7) 17 13.9 45.6 (5.7)

Education level 0.129

High school or less 25 5.2 47.8 (7.3) 5b 4.1 47.6 (7.1)

College or trade school 128 26.8 46 (5.9) 39b 32.0 46.8 (5.7)

Undergraduate degree 185 38.7 45.4 (6.2) 53b 43.4 45.4 (7.7)

Graduate degree 140 29.3 44.1 (5.0) 23b 18.9 42.8 (5.6)

Household annual income,
Canadian $

0.118

≤40,000 43 9.0 48 (6.1) 17b 13.9 47.8 (6.1)

40,001–80,000 142 29.7 46.2 (6.4) 31b 25.4 46.9 (5.8)

80,001–100,000 99 20.7 45.2 (6.2) 17b 13.9 44.1 (5.6)

>100,000 194 40.6 44.1 (4.9) 37b 30.3 44.4 (8.5)

Smoked during pregnancy 0.249

Yes 41 8.6 47.9 (6.8) 6 4.9 50.2 (7.3)

No 437 91.4 45.1 (5.7) 116 95.1 45.2 (6.7)

Parity 0.679

Nulliparous 209 43.7 45.9 (5.5) 51 41.8 47.0 (8.0)

Primiparous 196 41.0 44.6 (5.8) 55 45.1 44.6 (5.3)

Multiparous 73 15.3 45.5 (7.0) 16 13.1 43.6 (6.3)

Took supplement with folic acid? 0.713

Yes 452 94.6 45.3 (5.9) 117 95.9 45.4 (6.8)

No 26 5.4 45.5 (5.7) 5 4.1 46.4 (8.1)

HOME score 0.094

≥45 383 80.1 44.6 (5.3) 75b 61.5 44.9 (5.3)

<45 95 19.9 48.4 (7) 29b 23.8 47.7 (9.3)

Abbreviations: HOME, Home Observation for Measurement of the Environment; MIREC, Maternal–Infant Research on Environmental
Chemicals Study; SD, standard deviation; SRS, Social Responsiveness Scale.

a P < 0.05 for χ2 test comparing the included mothers and the excluded mothers. P values are 2-sided.
b Counts do not add up to 122, because some participants were missing data with respect to these variables.

Am J Epidemiol. 2021;190(9):1803–1813

D
ow

nloaded from
 https://academ

ic.oup.com
/aje/article/190/9/1803/6199272 by H

opital Sainte-Justine user on 19 June 2023



Gestational Toxicants and ASD Behaviors 1807

the following characteristics: were male, had mothers who
smoked, were socioeconomically disadvantaged, and grew
up in a less-stimulating home environment (Table 1).

Many toxicants, including PCB138, PCB153, dichloro-
diphenyldichloroethylene, all metals, and most phthalate
metabolites, were detectable in more than 90% of our sample
(Table 2). Geometric means for biomarker concentrations
were similar or slightly lower than those of Canadian women
aged 20–39 years who participated in cycle 1 (2007–2009)
of the Canadian Health Measurement Survey (64) (Table 2).
In addition to the PCBs and DEHPs, some toxicants were
correlated with each other. This was true for oxychlordane
and trans-nonachlor; dimethylphosphate and dimethylthio-
phosphate; and the organochlorine pesticides and the PCBs
(P < 0.01) (Web Figure 2).

Frequentist linear regression analyses

Before presenting our Bayesian quantile regression results,
we present our findings using linear regression. Overall,
we found negligible confounder-adjusted changes in SRS
scores using this method (Figure 1). Higher gestational lev-
els of lead, cadmium, bisphenol-A, mono-3-carboxypropyl
phthalate (MCPP), mono-butyl phthalate, and the molar sum
of 4 PCBs were associated with higher mean SRS scores.
Meanwhile, trans-nonachlor, mono-ethyl phthalate (MEP),
and manganese were associated with lower mean SRS scores
(Figure 1).

The P values for linear and quadratic deviations from ho-
moscedasticity are presented in Web Table 2. Arsenic, cad-
mium, lead, dichlorodiphenyldichloroethylene, and MCPP
had statistically significant deviations from homoscedastic-
ity after adjusting for confounders. We adjusted their 95%
posterior credible intervals to account for their heteroscedas-
ticity.

Bayesian quantile regression analyses

After adjusting for confounders, we found that many
toxicants were associated with mild changes in SRS scores
in at least some part of the SRS distribution (Figure 1). We
identified monotonic trends for some toxicants, where the
associations increased in magnitude across the SRS distri-
bution. The associations between gestational levels of mono-
butyl phthalate, MCPP, the sum of the DEHPs, bisphenol-A,
arsenic, cadmium, and β-hexachlorocyclohexane steadily
increased as we modeled the 10th to the 90th percentiles of
the SRS distribution. In contrast, the associations between
gestational levels of manganese, trans-nonachlor, and MEP
steadily decreased as we modeled the 10th to the 90th
percentiles of the SRS distribution.

Bayesian quantile regression allowed us to identify rela-
tively strong associations at the 90th percentile of the SRS
distribution compared with the mean. Each 2-fold increase
in gestational urinary MCPP concentrations at the upper
tail of the SRS distribution was associated with increased
SRS scores (βτ=0.9 = 0.79, 95% adjusted posterior cred-
ible interval: 0.24, 1.34). In contrast, we found relatively
weaker associations using linear regression to model the

mean of the SRS distribution (βLR = 0.37, 95% CI: 0.08,
0.67) (Figure 1). We observed a similar phenomenon for
lead (βτ=0.9 = 0.99, 95% adjusted posterior credible interval:
−1.05, 3.02 vs. βLR = 0.54, 95% CI: −0.25, 1.32), trans-
nonachlor (βτ=0.9 = −0.51, 95% posterior credible interval:
−1.21, 0.2 vs. βLR = −0.24, 95% CI: −0.90, 0.42), and the
sum of the DEHPs (βτ=0.9 = 0.70, 95% posterior credible
interval: 0.14, 1.26 vs. βLR = 0.06, 95% CI: −0.43, 0.55).

We identified positive associations between plasma PCB
concentrations and SRS scores throughout the SRS distribu-
tion (Figure 1). Urinary organophosphate pesticide concen-
trations were associated with slightly decreased SRS scores
at the upper tail of SRS scores (τ = 0.90). Associations were
weak and mixed in the other parts of the SRS distribution.
Our findings suggest there are no associations between
urinary triclosan concentrations and SRS scores (Figure 1).
Convergence was reached for all toxicants for the range of τ
values used in this study (Web Figure 5).

Supplementary analyses

We found that child sex modified some of the associations
between gestational exposure to several toxicants and SRS
scores. For boys, the associations were relatively stronger for
mono-butyl phthalate, MEP, and mono-benzyl phthalate. For
girls, the associations were relatively stronger for oxychlor-
dane, and trans-nonachlor (Web Figure 6). Differences in
associations between the sexes were pronounced at the 90th
percentile of SRS scores. Adding each mother’s smoking
status to the model did not meaningfully change the effect
estimates (Web Figure 7). Removing outlier toxicant con-
centrations changed our results in an inconsistent manner,
especially at the 90th percentile of SRS scores. This caused
associations to increase for lead, MCPP, and especially the
sum of the DEHPs. Associations decreased for arsenic,
β-hexachlorocyclohexane, PCB153, and especially oxy-
chlordane (Web Figure 8). To assess nonlinearity in the
dose–response relationship between toxicant concentration
and SRS scores, we repeated our primary analysis using
concentrations broken down into quartiles of exposure.
Comparing the top and bottom quartiles, we found similar
trends to our main analysis, but we did not find clear
evidence of a dose–response relationship for any individual
toxicant (Web Figure 9). The results from 10 imputations
of low-level toxicant exposure are shown in Web Figure 10.
The variation in parameter estimates between imputations
was particularly high for cotinine, which led us to conclude
that toxicants must be detectable at least 60% of the time to
be included in our study.

DISCUSSION

We assessed the relationship between gestational expo-
sure to various toxicants and autistic behaviors measured
with SRS in preschool-aged Canadian children, using
Bayesian quantile regression. We found that associations
between SRS scores and maternal concentrations of cad-
mium, lead, and some phthalate metabolites in blood or urine
were the strongest at the high end of the SRS distribution.
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Table 2. Distributiona of Toxicants in MIREC Participants (n = 478), Canada, 2008–2011

Chemical Name % >LOD GM (GSD)
Percentile

Maximum CHMS
GMb

25th 50th 75th 95th

Metals, μg/Lc

Arsenic 96.44 0.82 (1.95) 0.57 0.82 1.20 2.26 34.5 0.88

Cadmium 97.07 0.20 (2.10) 0.13 0.19 0.29 0.68 5.06 0.36

Lead 100.00 6.33 (1.62) 4.56 6.22 8.50 14.3 41.4 8.90

Manganese 100.00 8.56 (1.36) 7.14 8.79 10.4 13.7 26.9 9.17

Mercury 91.00 0.62 (2.77) 0.34 0.66 1.34 2.81 7.82 0.70

Organochlorine pesticides, ng/g lipidd

β-HCH 65.48 2.29 (2.67) <LOD 2.15 3.39 9.01 500 4.83

DDE 99.58 55.3 (2.14) 35.4 49.1 74.5 211 2,660 102

Oxychlordane 93.31 2.05 (1.79) 1.55 2.17 3.02 4.50 8.44 2.31

trans-Nonachlor 87.03 2.99 (1.82) 2.08 3.09 4.38 7.88 18.3 3.07

Organophosphate pesticides, μg/Le

DEP 73.01 2.49 (2.21) <LOD 2.50 4.07 9.54 36.8 2.00f

DMP 76.57 3.13 (2.62) 1.73 3.29 5.89 14.1 71.5 2.60f

DMTP 79.71 3.52 (3.95) 1.33 3.84 8.65 30.9 87.8 1.80f

Phenols, μg/Le

BPA 84.31 0.84 (2.64) 0.46 0.81 1.39 4.46 79.1 1.20f

Phthalates, μg/Le

MBP 99.79 12.7 (2.33) 7.80 12.0 19.0 54.8 526 NR

MBzP 99.37 5.45 (2.52) 3.12 4.77 9.05 26.2 182 9.30f

MCPP 80.13 0.89 (3.28) 0.47 0.89 1.71 7.52 72.0 1.01f

MEHHP 99.37 9.55 (2.18) 6.18 9.10 14.5 34.7 356. 20.0f

MEHP 98.12 2.34 (2.21) 1.43 2.21 3.71 9.12 53.0 3.40f

MEOHP 99.58 6.78 (2.03) 4.51 6.50 9.61 22.6 171 13.0f

MEP 99.79 32.2 (4.05) 12.3 24.8 67.5 462 20,800 50.0f

Sum of DEHPsg 18.8 (2.07) 12.5 18.0 26.7 63.8 551 NA

Polychlorinated biphenyls, ng/g lipidd

PCB118 77.82 2.46 (1.87) 1.74 2.48 3.43 6.56 30.2 3.09

PCB138 94.77 4.51 (2.03) 2.99 4.52 6.61 15.0 46.8 5.46

PCB153 99.79 8.11 (2.00) 5.00 7.82 12.0 28.1 80.8 8.22

PCB180 96.86 5.55 (2.20) 3.28 5.26 8.44 21.4 115 5.79

Sum of PCBsh 21.0 (1.96) 13.2 20.1 30.7 70.7 221 NA

Triclosan, μg/Le

Triclosan 99.79 15.4 (8.74) 2.62 9.29 97.2 569 1740 19.0f

Abbreviations: BPA, bisphenol-A; CHMS, Canadian Health Measures Survey; DDE, p,p′-dichlorodiphenyldichloroethylene; DEHP, di-2-
ethylhexyl phthalate; DEP, diethylphosphate; DMP, dimethylphosphate; DMTP, dimethylthiophosphate; GM, geometric mean; GSD, geometric
standard deviation; LOD, limit of detection; MBP, monobutyl phthalate; MBzP, mono-benzyl phthalate; MCPP, mono-3-carboxypropyl phthalate;
MEHHP, mono-(2-ethyl-5-hydroxy-hexyl) phthalate; MEHP, mono-(2-ethylhexyl) phthalate; MEOHP, mono-(2-ethyl-5-oxo-hexyl) phthalate;
MEP, mono-ethyl phthalate; MIREC, Maternal–Infant Research on Environmental Chemicals; NA, not applicable; NR, not reported; PCB,
polychlorinated biphenyl; β-HCH, β-hexachlorocyclohexane.

a Concentrations are rounded to 3 significant digits when greater than 1.00. Otherwise, concentrations are rounded to the nearest hundredth
to ref lect the precision of the gas chromatography/mass spectrometry procedure.

b Concentration in Canadian women aged 20–39 years from Canadian Health Measures Survey (CHMS) cycle 2, 2009–2011 for triclosan;
CHMS cycle 1, 2007–2009 for the remaining toxicants.

c Whole-blood concentration.
d Plasma concentration.
e Urinary concentration standardized by specific gravity.
f Not standardized by specific gravity in CHMS.
g Sum of MEHHP, MEHP, MEOHP, weighted by molecular weight.
h Sum of PCB118, PCB138, PCB153, PCB180, weighted by molecular weight.

Am J Epidemiol. 2021;190(9):1803–1813

D
ow

nloaded from
 https://academ

ic.oup.com
/aje/article/190/9/1803/6199272 by H

opital Sainte-Justine user on 19 June 2023



Gestational Toxicants and ASD Behaviors 1809

10 30 50 70 90

−1.50
−1.00
−0.50

0.00
0.50
1.00
1.50
2.00
2.50

Distribution, %

β

10 30 50 70 90

−1.00
−0.50

0.00
0.50
1.00
1.50
2.00
2.50

Distribution, %
β

10 30 50 70 90

−2.0
−1.0
0.0
1.0
2.0
3.0
4.0

Distribution, %

β

10 30 50 70 90

−2.50
−2.00
−1.50
−1.00
−0.50

0.00
0.50
1.00
1.50

Distribution, %

β

10 30 50 70 90

−0.75

−0.50

−0.25

0.00

0.25

0.50

Distribution, %

β

10 30 50 70 90

−0.50

0.00

0.50

1.00

Distribution, %

β

10 30 50 70 90

−2.00
−1.50
−1.00
−0.50

0.00
0.50
1.00
1.50

Distribution, %

β

10 30 50 70 90

−1.50
−1.00
−0.50

0.00
0.50
1.00
1.50

Distribution, %
β

10 30 50 70 90

−1.50

−1.00

−0.50

0.00

0.50

1.00

Distribution, %

β

10 30 50 70 90
−0.75

−0.50

−0.25

0.00

0.25

0.50

Distribution, %

β

10 30 50 70 90
−0.50

−0.25

0.00

0.25

0.50

Distribution, %

β

10 30 50 70 90

−0.50

−0.25

0.00

0.25

0.50

Distribution, %

β

10 30 50 70 90

−0.25

0.00

0.25

0.50

0.75

1.00

Distribution, %

β

10 30 50 70 90

−0.40

0.00

0.40

0.80

1.20

Distribution, %
β

10 30 50 70 90

−0.30

0.00

0.30

0.60

Distribution, %

β
10 30 50 70 90

−0.50

0.00

0.50

1.00

1.50

Distribution, %

β

10 30 50 70 90

−0.75

−0.50

−0.25

0.00

0.25

Distribution, %

β

10 30 50 70 90

−0.50

0.00

0.50

1.00

1.50

Distribution, %

β

10 30 50 70 90

−1.00

−0.50

0.00

0.50

1.00

Distribution, %

β

10 30 50 70 90

−0.40

0.00

0.40

0.80

1.20

Distribution, %
β

10 30 50 70 90

−0.50

0.00

0.50

1.00

Distribution, %

β

10 30 50 70 90

−0.25

0.00

0.25

0.50

0.75

1.00

Distribution, %

β

10 30 50 70 90

−0.25
0.00
0.25
0.50
0.75
1.00
1.25

Distribution, %

β

10 30 50 70 90

−0.20

0.00

0.20

Distribution, %

β

Toxicant Class

Metal, µg/L
OCP, ng/g lipid
OPP, µg/L
PCB, ng/g lipid
Phenol, µg/L
Phthalate, µg/L
Triclosan, µg/L

A) B) C) D) E)

F) G) H) I) J)

K) L) M) N) O)

P) Q) R) S) T)

U) V) W) X)

Figure 1. Effect estimates for the association between maternal toxicant concentrations and SRS scores using linear regression and
Bayesian quantile regression, from the MIREC study (n = 478), Canada, 2008–2011. Effect estimates were adjusted for child sex, folate
supplementation status, Home Observation for Measurement of the Environment score, and maternal characteristics (ethnicity, age, income,
education, parity, city of residence). Coefficients describe the change in Social Responsiveness Scale score per 2-fold increase in concentration
of the specified toxicant. Horizontal red lines in the gray boxes represent linear regression coefficients and their 95% confidence intervals.
Circles and their whiskers depict the Bayesian quantile regression coefficients for the specified percentile of the SRS distribution and their
95% posterior credible intervals. Solid whiskers denote unadjusted posterior credible intervals, dotted whiskers denote adjusted posterior
credible intervals. Toxicants include: A) arsenic; B) cadmium; C) lead; D) manganese; E) mercury; F) β-hexachlorocyclohexane (β-HCH); G)
p,p′-dichlorodiphenyldichloroethylene (DDE); H) oxychlordane; I) trans-nonachlor; J) diethylphosphate (DEP); K) dimethylphosphate (DMP);
L) dimethylthiophosphate (DMTP); M) bisphenol-A (BPA); N) monobutyl phthalate (MBP); O) mono-benzyl phthalate (MBzP); P) mono-3-
carboxypropyl phthalate (MCPP); Q) mono-ethyl phthalate (MEP); R) sum of mono-(2-ethyl-5-hydroxy-hexyl) phthalate (MEHHP), mono-(2-
ethylhexyl) phthalate (MEHP), and mono-(2-ethyl-5-oxo-hexyl) phthalate (MEOHP), weighted by molecular weight; S) polychlorinated biphenyl
(PCB)118; T) PCB138; U) PCB153; V) PCB180; W) sum of PCB118, PCB138, PCB153, and PCB180, weighted by molecular weight; and
X) triclosan. OCP, organochlorine pesticide; OPP, organophosphorus pesticide.
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In other words, our results suggest that children with the
most autistic-like behaviors, who are of greater clinical in-
terest, appear to be particularly susceptible to these toxi-
cants. Quantile regression, therefore, allowed us to uncover
details about the relationship between toxicants and autis-
tic behaviors that could have been overlooked if we simply
examined the mean. In contrast, increased maternal concen-
trations of manganese, trans-nonachlor, many organophos-
phate pesticide metabolites, and MEP were most strongly
associated with decreased SRS scores at the upper tail of
the SRS distribution (Figure 1). Child sex modified many
of these associations, with associations for several phthalate
metabolites being stronger in boys than girls (Web Figure
6). We note that the associations identified in our study were
quite mild. A 1-unit increase in SRS score corresponds to
just a one-sixth of a standard deviation increase.

Our study builds on the existing literature investigating the
link between gestational exposure to toxicants and autistic
behaviors. Other researchers have also linked metals (19,
21), organochlorine pesticides, PCBs (12–15), bisphenol-
A, and several phthalate metabolites (7–10) with autistic
behaviors. There were some inconsistencies with the lit-
erature. Although Roberts et al. (21) identified a positive
link between gestational mercury concentrations and ASD
diagnosis, our findings did not suggest that this was the case
(Figure 1). Some of our findings contrast with those of Braun
et al. (13), who identified a protective relationship between
gestational exposure to PCB153, β-hexachlorocyclohexane,
and SRS scores. MEP was most strongly linked with ASD
in studies by Shin et al. (8) and Miodovnik et al. (10), yet
our results suggest the opposite (Figure 1). These studies (8,
10, 13, 21) may differ from ours in several ways, including
the study population, degree of exposure, and the statistical
approach.

A key finding of our study is that the relationships of gesta-
tional concentrations of many toxicants and SRS scores were
not uniform across the distribution of SRS scores. We found
monotonic patterns for numerous toxicants where associa-
tions were either particularly strong or particularly weak at
the 90th percentile of the SRS distribution, which repre-
sents children with the most autistic behaviors. This suggests
that this subgroup has biological features that could pro-
tect them from some toxicants (manganese, trans-nonachlor,
MEP) and make them more susceptible to other toxicants
(several metals and phthalates). We began investigating this
by stratifying by child sex, but this did not provide a clear
explanation for this phenomenon (Web Figure 6). We rec-
ommend that more research be conducted to find a bio-
logical explanation for why associations differed among
children with more autistic behaviors. Factors that may
influence the developing brain’s susceptibility to toxicants,
such as prenatal micronutrient availability (11), should be
scrutinized.

This study has several limitations. First, our use of com-
plete case analysis may have resulted in increased bias and
variance (65), especially considering that excluded mothers
tended to be of lower socioeconomic status (Table 1). Sec-
ond, biomarkers of organophosphate pesticide and phthalate
exposure have a short half-life (66, 67). We expect that their
regression coefficients are biased toward the null due to

nondifferential exposure misclassification. Third, the SRS-
2 questionnaire may overestimate autistic behaviors in chil-
dren with lower intelligence quotient scores or behavioral
disorders (68–70). Fourth, the participants in the MIREC
study may not be representative of the rest of Canada;
they are wealthier and more likely to be White (41). Fifth,
we used toxicant concentrations at 6–13 weeks’ gestation.
Gestational exposure at different stages of development may
have different consequences (71). Finally, we did not con-
sider the role that combined exposure to several toxicants
may have on autistic behaviors. Although we considered
the molar sums of some highly correlated toxicants, latent
class analysis or weighted quantile sum regression may
be a more suitable approach for addressing this question
(72, 73).

Our investigation builds on prior research linking endo-
crine-disrupting chemicals with ASD. It is also, to our
knowledge, the first to analyze, using Bayesian quantile
regression, the relationship between an array of toxicants
and ASD. We have shown that quantile regression can unveil
nuances in the relationship between toxicants and neurode-
velopmental outcomes that may be overlooked with ordinary
least squares regression methods, such as linear regression.
Quantile regression thus should receive more attention from
environmental epidemiologists, especially when the rela-
tionship between a biomarker and the response variable may
differ throughout the response’s distribution (74).
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