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A B S T R A C T

Exposure to the man-made chemicals perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS) and
perfluorohexanesulfonate (PFHxS) is widespread. These perfluoroalkyl substances (PFASs) have been associated
with androgenic endocrine-disrupting properties; however, the evidence is equivocal and few human studies
have examined the association between prenatal exposure to PFASs and markers of androgenic endocrine dis-
ruption such as changes in anogenital distance (AGD).

In the MIREC cohort, PFOA, PFOS and PFHxS were analyzed in first trimester maternal plasma. AGD was
measured in 205 male and 196 female newborns. The change in estimate procedure was used to identify con-
founders by sex and AGD in multiple linear regression models.

Geometric mean plasma concentrations (95% CI) for PFOA, PFOS and PFHxS were 1.71 (1.61, 1.81), 4.40
(4.18, 4.64) and 1.15 (1.06, 1.25) μg/L, respectively. A one-unit increase in natural log transformed PFOA was
associated with a 1.36 mm (95% CI 0.30, 2.41) increase in anoscrotal distance, adjusting for household income,
active smoking status during pregnancy and gestational age. However, when examined by quartiles, a non-
monotonic pattern was observed with wide confidence intervals. No consistent patterns were observed between
maternal PFAS concentrations and female AGDs.

This study found no clear evidence that maternal plasma concentrations of PFOS, PFOA or PFHxS were
associated with shorter infant anogenital distance in males or any change in AGD in females. Whether the
positive association observed between longer anoscrotal distance and PFOA is real or would have any long-
lasting effect on the reproductive health of males is unknown and needs to be investigated further.

1. Introduction

Perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS)
and perfluorohexanesulfonate (PFHxS) are man-made chemicals that
have been used for decades in the manufacture of stain- and water-
resistant coatings for textiles and carpets; non-stick coatings on cook-
ware; fire-fighting foams; and personal care products. PFOS is no longer
manufactured, imported, sold, or used in Canada [1] but still persists in
the environment as evidenced by the high detection rate in the Cana-
dian population for PFOS as well as PFOA and PFHxS [2]. The

estimated half-life for PFHxS (5.3 years) is considerably longer than for
PFOS (3.4 years) and PFOA (2.7 years) with some evidence of more
rapid elimination in women for PFHxS and PFOS, than in men [3].

An in vitro study has reported that some PFASs may act as androgen
receptor antagonists [4], while another study reported no effect of
PFASs on estrogen or androgen receptor activity [5]. There is some
evidence from rodent models that PFOA and PFOS increase anogenital
distance (AGD) in females [6] and PFOA may disrupt testicular Leydig
cell development [7].

Anogenital distance is one of the battery of outcomes recommended
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by the Organisation for Economic Co-operation and Development as an
indicator of developmental toxicity in rodents [8]. A shortened AGD is a
marker of anti-androgenic effects in males while a longer AGD is a
marker of androgenic effects in females. Although the evidence suggests
that exposure to endocrine disrupting chemicals is pervasive in Canada
(https://www.canada.ca/en/health-canada/services/environmental-
workplace-health/environmental-contaminants/human-biomonitoring-
environmental-chemicals.html#a1) and the US (https://www.cdc.gov/
exposurereport/index.html), their role in changes in infant AGD re-
mains unclear. Of the few human studies of infant AGD, most have

focused on maternal urinary concentrations of phthalate metabolites.
While our previous analysis reported no association between maternal
diethylhexyl phthalate (DEHP) urinary concentrations and shorter AGD
in male infants [9], an earlier meta-analysis of 5 studies published up to
mid-2016 reported DEHP metabolites were associated with decreased
AGD in boys [10]. Studies which have examined associations between
other non-persistent or persistent chemicals and AGD are limited, with
many suffering from methodological challenges [11].

Only a few epidemiologic studies have examined the association
between prenatal exposure to PFASs and AGD and results have been

Table 1
Characteristics of mother-infant pairs and plasma collection factors for participants from MIREC-ID birth assessment, according to median maternal PFAS con-
centrations (μg/L). (n = 403).

Frequency Percentage PFOA Median
(IQR)

PFOS Median
(IQR)

PFHxS Median (IQR)

Recruitment Site
A 17 4.2 1.3 (0.7 - 1.6)* 4.4 (2.0 – 5.0) 0.9 (0.6 - 1.6)*
B 97 24.1 1.7 (1.1 - 2.5) 4.8 (3.8 - 5.9) 1.2 (0.8 - 1.7)
C 105 26.1 2 (1.4 - 2.8) 4.4 (3.3 - 6.4) 1.3 (0.9 – 2.0)
D 107 26.6 1.6 (1.1 - 2.5) 4.1 (3 - 5.5) 0.9 (0.6 - 1.6)
E 77 19.1 1.8 (1.1 - 2.3) 4.8 (3.2 - 6.7) 0.9 (0.6 - 1.6)
Maternal Education (missing = 2)
≤High School 37 9.2 1.5 (1.1 - 1.9)* 3.8 (2.8 - 5.1) 1.1 (0.8 - 1.8)
Some College 23 5.7 1.6 (0.9 – 2.0) 4.0 (2.9 - 5.2) 1.0 (0.7 - 1.7)
College/ Trade School Diploma 99 24.7 1.9 (1.4 - 2.8) 4.8 (3.3 - 6.7) 1.3 (0.8 - 2.0)
University Degree 242 60.4 1.7 (1.1 - 2.6) 4.5 (3.4 - 6.1) 1.0 (0.7 - 1.6)
Household Income (CAD) (missing = 9)
< = 50,000 82 20.8 1.6 (1.3 - 2.3)* 4.4 (3.0 - 6.1) 1.2 (0.7 - 1.9)
50,001-100,000 192 48.7 1.6 (1.0 - 2.4) 4.4 (3.4 - 5.9) 1.1 (0.7 - 1.8)
≥100,000 120 30.5 2.0 (1.2 - 2.7) 4.8 (3.4 - 6.7) 1.0 (0.7 - 1.7)
Parity
Nulliparous 116 28.8 2.5 (1.8 - 3.6)* 5.3 (4.1 - 7.7)* 1.5 (0.9 - 2.3)*
Multiparous 287 71.2 1.4 (1.0 - 2.1) 4.2 (2.9 - 5.7) 1.0 (0.7 - 1.6)
Mother’s Country of Birth
Canada 347 86.1 1.8 (1.2 - 2.5) 4.5 (3.3 – 6.0) 1.1 (0.7 - 1.8)*
Other 56 13.9 1.5 (1.1 – 3.0) 4.3 (2.8 - 6.6) 0.9 (0.5 - 1.6)
Mother’s Population Group
White 369 91.6 1.8 (1.2 - 2.5)* 4.6 (3.4 - 6.3)* 1.1 (0.7 - 1.8)
Other 34 8.4 1.3 (1.0 - 1.7) 3.6 (2.4 - 4.8) 1.0 (0.5 - 1.5)
Mother’s Smoking Status (Active) (missing = 24)
Never 260 68.6 1.6 (1.1 - 2.5) 4.4 (3.3 - 6.1) 1.0 (0.7 - 1.6)
Former 95 25.1 1.9 (1.3 - 2.5) 4.8 (3.3 - 6.2) 1.2 (0.7 - 1.9)
Current (quit during pregnancy, occasional or daily) 24 6.3 1.9 (1.2 - 3.1) 4.8 (3.3 - 6.5) 1.5 (0.8 – 3.0)
Mother’s Exposure to Environmental Tobacco Smoke during Pregnancy (Passive)

(missing = 9)
No 148 37.6 1.7 (1.1 - 2.5) 4.5 (3.0 - 6.0) 1.1 (0.7 - 1.7)
Yes 246 62.4 1.7 (1.2 - 2.5) 4.5 (3.4 - 6.3) 1.1 (0.7 - 1.8)
Pre-pregnancy Body Mass Index (kg/m2) (missing = 37)
< 25.00 220 60.1 1.6 (1.2 - 2.2) 4.4 (3.3 - 5.8) 1.0 (0.7 - 1.6)
25.00-29.99 77 21.0 2.0 (1.2 - 2.8) 4.8 (3.5 - 6.4) 1.1 (0.8 - 1.7)
≥30 69 18.9 1.6 (1.1 - 2.6) 4.4 (3.0 - 6.1) 1.1 (0.7 - 1.7)
Season of Plasma Collection
Spring 102 25.3 1.9 (1.1 - 2.7) 4.8 (3.5 - 6.4) 1.3 (0.7 - 2.3)
Summer 89 22.1 1.7 (1.1 - 2.6) 4.4 (3.3 - 6.0) 1.1 (0.7 - 1.7)
Fall 135 33.5 1.9 (1.2 - 2.9) 4.8 (3.4 - 6.5) 1.3 (0.8 - 1.9)
Winter 77 19.1 1.6 (1.2 - 2.2) 4.4 (3.2 - 6.0) 1.1 (0.7 - 1.7)
Sex of Baby
Female 205 50.9 1.8 (1.2 - 2.5) 4.5 (3.5 - 6.2) 1.2 (0.7 - 2.0)
Male 198 49.1 1.7 (1.1 - 2.5) 4.4 (3.0 - 6.1) 1.1 (0.7 - 1.7)

Range Mean (S.D.) PFOA
%Change (95%CI)

PFOS
%Change (95%CI)

PFHxS
%Change (95%CI)

Maternal Age (years) [17.0, 42.0] 31.31 (4.78) −1.0 (-2.2, 0.3) 0.1 (-0.1, 1.2) −2.6 (-4.3, -1.0)**
Gestational Age at Birth (weeks) [33.4, 42.0] 39.53 (1.41) −0.1 (-4.4, 4.3) 0.01 (-3.7, 3.8) −3.1 (-8.6, 2.7)
Gestational Age at Blood Collection (weeks) [6.1, 14.5] 12.02 (1.53) 2.5 (-1.5, 6.7) 1.1 (-2.3, 4.7) −0.4 (-5.7, 5.0)
Infant Age at Exam (days) [0.0, 44.0] 3.41 (4.57) 2.1 (0.8, 3.5)** 2.1 (1.0, 3.3)** 2.2 (0.4, 4.0)**
Adjusted Infant age at exam (Gestational Age at Birth + Age at Exam) (weeks) [36.1, 43.3] 40.01 (1.39) 3.2 (-1.2, 7.8) 3.4 (-0.5, 7.3) 0.2 (-5.6, 6.3)
Infant Weight at Exam (kg), (missing = 60) [1.9, 4.6] 3.28 (0.47) −5.9 (-18.4, 8.6) −3.8 (-14.9, 8.7) −17.8 (-32.1, -0.5)**
Infant Length at Exam (cm), (missing = 21) [43.1, 59.1] 50.46 (2.48) 0.3 (-2.1, 2.7) 1.3 (-0.8, 3.4) −0.5 (-3.8, 2.9)
Weight-for-Length Z-score1, (missing = 84) [-5.2, 2.8] −0.48 (1.24) −3.0 (-8, 2.3) −3.8 (-8.0, 0.6) −7.7 (-14.3, -0.5)**
Weight-for-Age Z-score1, (missing = 60) [-3.7, 2.5] −0.08 (1.02) −4.8 (-10.9, 1.7) −4.1 (-9.4, 1.5) −10.6 (-18.2, -2.4)**

1 World Health Organization, Child Growth Standards. WHO Anthro (version 3.2.2, January 2011) and macros. http://www.who.int/childgrowth/software/en/.
*p< 0.05 Kruskal Wallis to test for differences in PFASs between categorical variables.
**p<0.05 Linear Regression to test for change in PFASs according to continuous variables.
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inconsistent. A Danish pregnancy study observed that women who had
higher serum PFOS concentrations had female infants with shorter
AGD, while there was no association with male AGD [12]. A study of
male infants from China reported that maternal plasma PFOS was as-
sociated with shorter anoscrotal distance at birth [13].

We postulate that developmental exposure to perfluorinated com-
pounds could adversely impact androgen-dependent development of
the reproductive tract and thus, could adversely affect anogenital dis-
tance (AGD) in newborns. The objectives of the current study were to
examine associations between prenatal exposure to PFOS, PFOA and
PFHxS and anogenital distances in male and female neonates in a
Canadian cohort exposed to background levels of these chemicals.

2. Materials and methods

2.1. Study population

The population for this study came from the prospective pregnancy
cohort study Maternal-Infant Research on Environmental Chemicals
(MIREC) [14]. Pregnant women were recruited in 2008–2011 from
multiple sites across Canada during the 1st trimester of pregnancy and
followed through delivery. Plasma samples were collected at recruit-
ment, questionnaires were administered at each trimester to collect
information on lifestyle and socio-economic status and clinical in-
formation was abstracted from medical records. Gestational age was
derived using both the woman’s last menstrual period (LMP) and ul-
trasound dating. If early ultrasound and LMP dates differed by ≤ 7
days, gestational age estimate was based on LMP date; if> 7 days, early
ultrasound was used to estimate gestational age.

As there were long delays in obtaining ethics approval at some of
the recruitment sites and insufficient funds and period of funding to
recruit from the entire cohort, the study population (called MIREC-ID)
was limited to five of the 10 sites. As one of the objectives of MIREC-ID
was to study infant behavior and development, the study population

was restricted to singleton infants without any major congenital birth
defects or neurological disorders.

The study was reviewed and approved by the Health Canada
Research Ethics Board and ethics committees at each recruitment site.
All women provided informed consent.

2.2. Infant anthropometry and anogenital distances

Shortly after birth (mean 3.5 days), anogenital distances were
measured in male and female infants along with their weight and
length. Weight and length were measured during the physical exam
using an infant scale (seca 727®) and infantometer (seca 416®) (seca,
Hamburg Germany). Initially, two measures for weight and length were
obtained. If the two measures for weight differed by greater than 5 g,
then a third measurement was taken. Similarly, if the two measures for
length differed by greater than 3 mm, then a third measurement was
taken.

In females, the distance (in mm) from the center of the anus to the
posterior convergence of the fourchette (anofourchette distance or
AFD) or the base of the clitoris (anoclitoris distance or ACD) was
measured using metric dial Vernier calipers. Similarly, for males, the
distances (in mm) between the base of the scrotum (junction of the
smooth perineal skin and the rugated skin of the scrotum) and the mid-
anus (anoscrotal distance or ASD) and between the centers of the anus
to the cephalad (superior) base of the penis (anopenile distance or APD)
were measured. The caliper was properly calibrated and set to zero
prior to each measurement. Two measurements were taken and re-
ported; if there was a>2 mm difference between the 2 measures of
AGD, then a third measurement was taken.

For all metrics, the mean of the two measurements was calculated
and used for this analysis; if a third measurement was taken, then the
mean of the 2 closest measures was calculated and used in the analysis.
All measurements were taken by trained study examiners, who had no
knowledge of maternal plasma PFAS levels.

Table 2
Association between anogenital distances in newborns and perfluoroalkyl substances (ln transformed and quartiles) in 1 st trimester maternal plasma, expressed as a
beta-coefficient (change in mm) with 95% CI from an adjusted linear regression model.

PFAS (μg/L) ACD (mm) 1 AFD (mm) 2 APD (mm) 3 ASD (mm) 4

Beta 95% CI Beta 95% CI Bata 95% CI Beta 95% CI

PFOA
ln PFOA (continuous) 0.78 (-0.25, 1.82) 0.06 (-1.20, 1.32) 0.1 (-0.94, 1.14) 1.36* (0.30, 2.41)
Q1 (0.05 - 1.10) Ref Ref Ref Ref
Q2 (1.11 - 1.70) 0.88 (-0.79, 2.54) −0.69 (-2.66, 1.28) −0.76 (-2.65, 1.12) 0.23 (-1.67, 2.13)
Q3 (1.71 - 2.50) 0.48 (-1.22, 2.17) 0.73 (-1.27, 2.74) −0.02 (-1.91, 1.88) −0.43 (-2.34, 1.47)
Q4 (2.51 - 11.00) 1.06 (-0.65, 2.76) −0.56 (-2.60, 1.48) −0.51 (-2.50, 1.48) 1.77 (-0.23, 3.77)
p-value for trend 5 0.3153 0.9388 0.8072 0.1484
PFOS
ln PFOS (continuous) 0.07 (-1.03, 1.18) −0.29 (-1.62, 1.04) 0.13 (-1.13, 1.38) 1.05 (-0.24, 2.35)
Q1 (0.15 - 3.30) Ref Ref Ref Ref
Q2 (3.31 - 4.50) −0.06 (-1.70, 1.58) −0.12 (-2.09, 1.85) −0.97 (-2.81, 0.87) −0.87 (-2.78, 1.04)
Q3 (4.51 - 6.10) 0.17 (-1.50, 1.85) 0.89 (-1.12, 2.90) −1.28 (-3.22, 0.66) 0.33 (-1.67, 2.33)
Q4 (6.11 - 19.00) −0.05 (-1.68, 1.57) −0.33 (-2.31, 1.65) 0.22 (-1.68, 2.13) 0.49 (-1.47, 2.46)
p-value for trend 5 0.977 0.9907 0.9077 0.3936
PFHxS
ln PFHxS (continuous) 0.3 (-0.47, 1.07) 0.14 (-0.79, 1.07) 0.24 (-0.52, 1.01) 0.22 (-0.54, 0.98)
Q1 (0.10 - 0.73) Ref Ref Ref Ref
Q2 (0.74 - 1.10) 1.01 (-0.56, 2.59) 1.23 (-0.66, 3.13) −0.91 (-2.74, 0.91) −0.08 (-1.99, 1.83)
Q3 (1.11 - 1.80) 0.31 (-1.40, 2.02) −0.51 (-2.56, 1.54) 0.64 (-1.23, 2.51) 0.13 (-1.80, 2.06)
Q4 (1.81 - 40.00) 0.92 (-0.94, 2.79) 0.52 (-1.71, 2.75) 0.57 (-1.30, 2.44) 0.57 (-1.33, 2.46)
p-value for trend 5 0.4827 0.9597 0.2786 0.5313

1 Models adjusted for: recruitment site, education, gestational age, weight-for-length Z-score.
2 Models adjusted for: recruitment site, weight-for-length Z-score.
3 Models adjusted for: recruitment site, education, active smoking status, gestational age.
4 Models adjusted for: household income, active smoking status, gestational age.
5 p-value for trend across quartiles using linear regression.
* p<0.05.
ACD: anoclitoris distance; AFD: anofourchette distance; APD: anopenile distance; ASD: anoscrotal distance.
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2.3. Maternal plasma perfluoroalkyl substances

The three perfluoroalkyl substances were measured in first trimester
plasma from 403 pregnant women as the hypothesized masculinization
programming window is believed to be between 8 and 14 weeks’ ge-
station. The analytes were extracted at alkaline pH with methyl tert-
butyl ether and ion-pairing with tetrabutylammonium hydrogensulfate,
evaporated to dryness and dissolved in the mobile phase at the Centre
de toxicologie du Québec, Institut National de Santé Publique du
Québec (INSPQ), Québec, Canada. They were analyzed by Waters
Acquity UPLC-MS-MS operated in the MRM mode with an electrospray

ion source in negative mode. The limit of detection (LOD) was 0.1, 0.3
and 0.2 (μg/L) for PFOA, PFOS and PFHxS, respectively. Any values
below the limit of detection were substituted by one half of the LOD.

2.4. Covariates

The following maternal variables were considered as potential
covariates: age (continuous), population group (White, other), country
of birth (Canada, other), pre-pregnancy body mass index (BMI) (< 25,
25–29, ≥30), education (high school or less, some college, college/
trade school, university degree), annual household income (≤50,000,

Fig. 1. Associations between newborn anogenital distances and ln-transformed or quartiles of perfluoroalkyl substances in 1 st trimester maternal plasma, expressed
as a beta-coefficient (change in mm).
ACD: anoclitoris distance; AFD: anofourchette distance; APD: anopenile distance; ASD: anoscrotal distance.
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50,001–100,000,> 100,000 CAD), parity (nulliparous, multiparous),
active exposure to tobacco smoke (never, former, current) and passive
smoke exposure (yes, no). In addition, we considered gestational age at
plasma collection, recruitment centre, gestational age at birth, adjusted
gestational age at examination (sum of gestational age at birth (in days)
and the age of the child at the AGD measurements (in days)), age,
weight and length at exam, weight for age z-score, and lastly, a weight-
for-length Z-score which was calculated based on the standards set out
by the World Health Organization [15]. As transportation in cold
temperatures before processing may decrease PFOS plasma concentra-
tions by approximately 30% [16], we also considered season of blood
collection. However, as our blood collections were done in the clinic

and the protocol required that bloods needed to be processed im-
mediately after the visit, with the tube processed within 1 h after col-
lection and all the aliquots frozen within 2 h after collection, delays and
transportation of unprocessed bloods are unlikely.

2.5. Statistical analysis

Descriptive statistics for each AGD measure and the PFAS analytes
were calculated. To test whether there are differences in PFAS con-
centrations according to the potential covariates, the Kruskal Wallis test
was used for the categorical variables and linear regression was used to
test for an association with the continuous variables. Multiple linear

Fig. 2. Comparison between the MIREC and Odense [12] study results of the association between infant anogenital distances and ln-transformed Perfluoroalkyl
Substances (PFASs) in 1 st trimester maternal plasma/serum, expressed as a beta-coefficient (change in mm).
MIREC: Results adjusted for significant covariates; MIREC_O: Results from the MIREC study adjusted for the same covariates as in the Odense study; Odense: Results
from the Odense study.
ACD: anoclitoris distance; AFD: anofourchette distance; APD: anopenile distance; ASD: anoscrotal distance.
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regression models were created to examine the relationship between
each AGD and plasma PFAS concentrations, including significant con-
founders as identified from the change-in estimate (CIE) procedure
[17], where variables are selected based on relative or absolute changes
in the estimated exposure effect (10%). Significant confounders were
identified from the change-in estimate procedure and included in the
multivariable linear models. For all models, the regression assumptions
were examined using residual plots and were illustrated by plotting a
normal probability curve and quantile-quantile plots. Adjusted models
were also checked for collinearity using the variance inflation factors
(VIFs) of each variable. As the PFAS chemicals were skewed to the
right, they were natural log transformed before being included as a
continuous variable in the linear models. The transformations led to
more normally and evenly distributed residuals. In addition, the che-
mical concentrations were categorized into quartiles and tested for a
linear trend using multiple linear regression models.

Separate models were created for each AGD to allow the data to
drive the selection and for potential sex differences in the confounders
to be identified, as the relationships between confounding factors and
outcomes may differ by sex, and failure to account for these differences
may result in false estimates of effect [18,19].

To compare our results with those from the Danish cohort [12], we
also produced models adjusting for the same set of covariates (age at
examination (gestational age at birth + age at examination), weight for
age z-score, pre-pregnancy BMI, parity and smoking).

The CIE procedure was automated using augmented backward
elimination for selecting confounders using R 3.2.4. The descriptive
statistics and linear modelling was performed using SAS EG 5.1.

3. Results

The median anogenital distance in 204 males was longer (APD 43.7
mm) than that for 195 females (ACD 33.4 mm) (Table S1). The geo-
metric mean concentrations of PFOA, PFOS and PFHxS were 1.71, 4.40
and 1.15 μg/L, respectively with high (> 97%) rates of detection (Table
S2). A total of 403 mother-infant dyads had maternal plasma PFAS
measurements and at least one infant AGD measure. The mean maternal
age was 31.3 years with 60% of the women having a university degree,
14% born outside Canada, 30% with a household income over
$100,000 CAD, 29% nulliparous and 6% currently smoking (Table 1).
Demographics in the MIREC-ID population were similar to those in the
entire cohort [9]. Women with less education or lower income had
lower PFOA median concentrations compared to those in the highest
category, while all three median PFAS levels tended to be higher among
women who were born in Canada, were White or nulliparous. There

were no differences in maternal PFAS concentrations by season of blood
collection, sex of the infant, maternal smoking or pre-pregnancy BMI
(Table 1). Metrics of infant size (e.g., weight-for-length z-score and
weight-for-age z-score) were associated with significant changes in AGD
(Table S3).

No consistent patterns of association were observed between ma-
ternal PFAS concentrations and female AGDs (Table 2, Fig. 1). Among
male infants, prenatal PFOA examined as a continuous variable was
associated with longer ASD (adjusted beta = 1.36; 95% CI 0.30, 2.41).
Although the test for trend was not significant, maternal PFOA exposure
in the highest quartile (2.51–11.00 μg/L) was associated with 1.77
(95% CI -0.23, 3.77) mm increase in ASD (Fig. 1).

Using the same set of covariates in the models as in the Danish study
[12], did not substantially change our results (Fig. 2).

4. Discussion

In this prospective cohort study we found some evidence that ma-
ternal ln-transformed PFOA plasma concentration was associated with
longer (masculinized) ASD in male infants; however, the test for trend
by quartile was not significant (p = 0.15). Still, endocrine disrupting
chemicals have been frequently associated with non-monotonic dose-
response curves [20]. No consistent patterns were observed among fe-
male infants. Geometric mean PFAS concentrations in maternal plasma
in MIREC were similar to those for females of reproductive age in the
2009–2011 Canadian population (PFOA 1.71 vs. 1.5; PFHxS 1.15 vs.
0.86; PFOS 4.40 vs. 4.4 μg/L, respectively) [2].

Only three previous epidemiologic studies have investigated asso-
ciations between PFASs and anogenital distance, each with different
findings (Table 3). In the Odense Denmark cohort, prenatal exposure to
ln-transformed PFOS or PFHxS was associated with reduced ACD, while
PFHxS was associated with reduced ASD [12]. While median PFOA
concentrations were the same in both cohorts, PFOS was higher in
Odense, while PFHxS was lower than in MIREC. Both MIREC and
Odense studies reported a longer ASD associated with PFOS levels, but
both had confidence intervals straddling the null value (Fig. 2). Neither
study found evidence of an association between PFASs and AFDs.

In the largest study conducted to date, maternal plasma PFOS was
associated with shorter ASD at birth [13]. No associations were ob-
served between AGD and PFHxS or PFOA. However, the association
between PFOS and shorter ASD was no longer apparent when AGDs
were measured at 12 months of age in the same infants. Median ma-
ternal PFAS concentrations were substantially higher in this Chinese
study compared to MIREC (Table 3).

Possible reasons for the disparity in results between the 3 pregnancy

Table 3
Comparison of studies of prenatal PFAS concentrations and AGD in infants.

Study Population No. of
Participants

PFAS Concentrations Age at AGD Confounders Adjusted Result

PFOS PFHxS PFOA

Odense Denmark1 316 boys, 231
girls

Median at 5-12 wks:
PFOA 1.7
PFHxS 0.3
PFOS 8.1 μg/L

3.5 months age at examination, weight for age z-score, pre-pregnancy BMI, parity,
smoking.

↓ACD ↓ACD
↓ASD

NA

China2 550 boys Median at 12-16 wks:
PFOA 20.13
PFHxS 2.84
PFOS 10.70 μg/L

1-3 days maternal age at delivery, gestational age, maternal education, parity, pre-
pregnancy BMI, infant age at physical examination, birth weight

↓ASD NA NA

MIREC 204 boys, 195
girls

Median at < 15 wks:
PFOA 1.7
PFHxS 1.1
PFOS 4.5 μg/L

Mean: 3.41
days

Varied by sex and AGD, but could include: recruitment site, education,
gestational age, weight-for-length Z-score, active smoking status, and
household income

NA NA ↑ASD

1 [12].
2 [13].
NA: no association – confidence intervals of beta included 0; ACD: anoclitoris distance; AFD: anofourchette distance; APD: anopenile distance; ASD: anoscrotal
distance.
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cohort studies of PFASs and AGD include: differences in age of the in-
fants at testing, the small effect sizes (1–2 mm measured per ln-loga-
rithm PFAS) making it difficult to achieve good statistical power and
increasing the likelihood of measurement errors, the concentrations and
proportions of individual PFASs in maternal blood differing in some
studies, residual or unmeasured confounding, differences in population
genetics, and likely exposure to other chemical mixtures.

In a cross-sectional study in Italy of young adults, significantly
shorter ASDs were observed among males from the exposed region
compared to a control region [21]. However, when the analysis was
restricted to the males with serum PFAS data, no significant differences
in ASD were observed but PFASs in plasma and seminal fluid were
positively correlated with circulating testosterone. The males from the
exposed region also had lower mean testicular volume, shorter penile
length, poorer semen quality and higher semen pH [21].

A few studies have examined prenatal PFAS exposure and associa-
tions with infant steroid hormones. A Danish study has reported that
prenatal exposure to PFOA was associated with lower sperm count and
higher levels of luteinizing and follicle stimulating hormone levels [22].
A Japanese study of 185 mother-infant pairs reported that maternal 2nd

trimester serum concentrations of PFOS were positively associated with
cord dehydroepiandrosterone (DHEA) levels while prenatal PFOA was
negatively associated with DHEA; associations were stronger among
boys than girls [23]. Furthermore, prenatal PFOS was associated with a
decrease in the cord glucocorticoid/androgenic hormone ratio, in-
dicating that PFOS may shift steroidogenesis to androgenic hormones
[23]. Fetal programming by prenatal exposure to PFOS, PFOA or PFHxS
has also been suggested by a small study which found these chemicals
to be associated with higher testosterone levels in girls at age 15 [24].

An in vitro study, has observed that PFHxS, PFOS and PFOA sig-
nificantly induced the estrogen receptor transactivity, whereas these
same chemicals (and other PFASs) significantly antagonized the an-
drogen receptor activity in a concentration dependent manner [4]. Only
a few animal toxicology studies have been published which have ex-
amined PFASs exposure and effects on reproductive toxicity, with no
consistent pattern emerging [6,25,26]. However, reported sex differ-
ences in the rate of elimination of PFOA [27] and PFHxS [28] in rats
and species differences (rats and mice may be more effective at elim-
inating PFOS [29] or PFHxS [30] than monkeys) may make it difficult
to extrapolate findings on PFASs from rodents to humans [28]. In hu-
mans, PFASs can be efficiently transported across the placenta [31,32]
and have been measured in umbilical cord blood, albeit at lower levels
than in maternal blood [33]. Higher placental transfer of PFOA and
PFOS (as measured by maternal to cord blood ratio) have been reported
in the female compared to the male fetus [34]. In another study, the
placenta to maternal serum ratios of PFOS and PFOA were higher in
pregnancies with male fetuses compared to female fetuses [35].

Under the testicular dysgenesis syndrome (TDS) hypothesis, “ab-
normal testis development (dysgenesis), which could have numerous
primary causes, leads secondarily to hormonal or other malfunctions of
the Leydig and/or Sertoli cells during male sexual differentiation,
leading in turn to increased risk of the reproductive disorders” (at birth:
cryptorchidism, hypospadias, shorter AGD, or in young adulthood:
testicular germ cell cancer and low sperm count) [36]. Any disruption
in testosterone production or action in fetal life could lead to the
downstream TDS disorders such as shorter AGD in males. Exposure to
endocrine disrupting chemicals has been linked with the increasing
incidence of male reproductive disorders including poor semen quality,
testicular malignancies and congenital developmental defects such as
hypospadias and cryptorchidism [37].

The clinical significance of infant AGDs on longer term reproductive
health in humans is still to be determined. Cross-sectional studies have
suggested that longer ASD in adult men is associated with higher sperm
concentration, total sperm count, and total motile sperm count [38,39],
while men in the lower 10th percentile of ASD have a higher risk of
being in the sub-fertile range for either sperm concentration or

morphology compared to men with ASDs above the median [40]. A
shorter AGD in women has been associated with increased risk for
gynecological morbidities [41].

Jain and colleagues have suggested that AGD in humans, like ani-
mals, is fixed in early gestation (likely during the hypothesized mas-
culinization programming window between 8 and 14 weeks) and is
unaffected by androgen levels thereafter [42]. However, in a rat study,
while in utero exposure to DEHP was associated with shorter AGD in
male offspring, pubertal exposure was still associated with minor effects
on AGD [43]. In addition, a prospective study of Chinese infants re-
ported that the association observed between prenatal PFASs exposure
and shorter AGD in males at birth, was not present when the infants
were 12 months of age [13]. While only very few longitudinal studies
have been conducted to determine whether AGDs at birth correlate
with those in adulthood, the evidence so far does not support this hy-
pothesis. One UK study that measured AGD in full-term males (n =
463) and females (n = 426) at birth and then at 3, 12, 18, and 24
months of age reported low correlations between AGDs at birth and
subsequent measurements in boys (r = 0.30 to 0.15) and lower still for
girls (0.26 to 0.07) [44]. A Danish study measured AGD in males (n =
407) and females (282) at 3 and 18 months of age and found the AGD z-
score for each child was significantly correlated between the two ex-
aminations (intra-class correlation coefficients of 0.63 and 0.35 for ASD
and APD, respectively; however, the correlation coefficients were lower
for females (0.26 for AFD and 0.19 for ACD) [45].

Some of the strengths of this study are the collection of biomarkers
of exposure during the critical window of development and prior to
measurement of the outcome, and the multi-site study population. This
research is limited by the sample size and associated reduced statistical
power. In addition, as newborns lose about 6–7% of their body weight
within the first week of life [46], measuring AGD shortly after birth
may have resulted in some AGD measurement errors, which can be
difficult to quantify. Unmeasured confounding and concomitant ex-
posure to other potential endocrine disrupting chemicals, including
other PFASs may also be factors. Our results may not be generalizable
to other populations, given MIREC participants tended to be older,
more educated, more likely to be born in Canada, married and less
likely to be a current smoker than the Canadian population giving birth
during the same time period [14].

In summary, this study found no clear evidence that maternal
plasma concentrations of PFOS, PFOA or PFHxS were associated with
shorter infant anogenital distance in males or any change in AGD in
females. Whether the positive association observed between longer ASD
and PFOA is real or would have any long-lasting effect on the re-
productive health of males is unknown and needs to be investigated
further. Given the likelihood of measurement error using current
methods, future studies should consider using new technologies al-
lowing more precise measurement of AGD in infants.
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