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In many biological experiments, certain values of a biomarker are often non-
detectable due to low concentrations of an analyte or the limitations of a chem-
ical analysis device, resulting in left-censored values. There is an increasing
demand for the analysis of data subject to detection limits in clinical and envi-
ronmental studies. In this paper, we develop a novel statistical method for the
maximum likelihood estimation in generalized linear models with covariates
subject to detection limits. Simulations are carried out to study the relative per-
formance of the proposed estimators, as compared to other existing estimators.
The proposed method is also applied to a real dataset from the Maternal-Infant
Research on Environmental Chemicals cohort study, where we investigate how
different chemical mixtures affect the health outcomes of infants and pregnant
women.
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1 INTRODUCTION

In many clinical studies, it is common to have biomarkers that are measured with detection limits. “Nondetects” (samples
that, for various reasons, have undetectable concentrations of the analyte) are often due to low-level concentrations of
biomarkers with values known only up to the laboratory's detection limits. The problem of nondetects in bioassays often
translates into the problem of left-censored covariates in the regression analysis. The simplest approach to deal with the
left censoring is the complete-case analysis in which we remove all observations falling below the limit of detection (LOD)
and perform a standard analysis based on the “truncated data.” Such analysis is not generally recommended due to the loss
of useful information in the data. Another approach is the substitution method in which the nondetect values of a covariate
are replaced by the LOD, LOD∕2, or LOD∕

√
2. Such methods are sometimes employed as they are easy to implement and

also simple to understand. However, Cole et al1 demonstrated in a simulation study that, as the proportion of nondetects
increases, replacing the left-censored values by LOD, LOD∕2, or LOD∕

√
2 results in increasingly biased estimators of

model parameters and also produces increasingly poor coverage probabilities of confidence intervals. Thompson and
Nelson2 found that replacing the left-censored values by half the detection limit led to biased parameter estimators and
also artificially small standard errors of the estimators. These studies clearly provide evidence against any use of ad hoc
substitution methods when analyzing data with detection limits.

Helsel3 reviewed a number of existing methods for dealing with censored observations commonly encountered
in clinical and environmental studies, which include the nonparametric Kaplan-Meier method for determining
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descriptive statistics and regression on order statistics for imputing the nondetects. Analysis of data subject to detection
limits has been extensively studied in the literature in recent years (eg, other works4-13). Helsel4 reviewed existing statis-
tical methods for dealing with nondetects in environmental data. Herring5 proposed a nonparametric Bayesian approach
for model selection and for handling truncation of exposures to complex chemical mixtures and health outcomes at lim-
its of detection in the framework of a complex hierarchical model. May et al6 proposed a Monte Carlo version of the
expectation-maximization algorithm to handle a large number of left-censored predictors in generalized linear models,
which required intensive computation. Satter et al7 discussed a likelihood method for estimation and inference with a
parametric proportional hazards model, where specific values of some biomarkers are left censored due to detection lim-
its. Satter et al8 proposed a flexible semiparametric approach for estimation in frailty models with left-censored covariates.
Bernhardt et al9 developed a multiple imputation approach for analyzing data with multiple predictors subject to detection
limits in the context of generalized linear models.

In the setting of linear regression models, substitution methods have also been used for cases when a single covari-
ate is subject to a detection limit. Richardson and Ciampi14 considered replacing left-censored values of a covariate
by the conditional expected value of the censored covariate given all observed values of the covariates. This method
requires specification of the underlying covariate distribution, which, in practice, may not be known with certainty.
Schisterman et al15 considered an unknown covariate distribution and proposed substituting the average of all observed
values of the left-censored covariate in the regression model, which was shown to provide unbiased estimates of the model
parameters. To deal with left-censored covariates, the maximum likelihood method is often used, which also requires spec-
ification of the covariate distribution. Nie et al16 compared these methods with the aforementioned substitution methods,
when a single covariate is subject to an LOD, where the maximum likelihood method appeared to perform the best when
the covariate distribution was known. The study concludes that the maximum likelihood method achieves unbiased and
efficient estimates of regression parameters under a known covariate distribution of a left-censored covariate.

This research was motivated by an epidemiologic study, referred to as the Maternal-Infant Research on Environmental
Chemicals (MIREC) study,17 which is a large cohort study of pregnant women and their newborns in Canada. The study
was established to obtain biomonitoring data on pregnant women and infants to examine potential adverse effects of
prenatal exposure to environmental chemicals on pregnancy and infant health. Pregnancy and infant health outcomes
are usually dichotomous and a common feature of the exposure data on the chemical mixtures is that a large proportion
of the data are truncated at the detection limits. There were 81 available chemicals in the MIREC dataset. Since not every
chemical is highly linearly correlated to other chemicals, the multiple imputation approach is not applicable in this case.
To investigate the effects of exposures to chemical mixtures on health outcomes, we developed a likelihood approach in
the framework of generalized linear models by addressing the issue of nondetects. The fundamental idea of our proposed
method is to take into account all possible values below LOD. Specifically, when studying the effects of covariates with
nondetects, we incorporated a weight function into the observed data likelihood function, where the weights are obtained
from a multivariate distribution of the indicators of nondetects. The analysis of the MIREC data is discussed further in
the Application section.

The paper is organized as follows. Section 2 introduces the model and notation and discusses the proposed maximum
likelihood approach for estimation in generalized linear models with covariates subject to detection limits. Section 3
presents an illustrative example to describe the computational issues of the proposed maximum likelihood method using
a simple logistic regression model. Section 4 studies the performance of the proposed estimators based on a series of Monte
Carlo simulations, where the empirical biases and mean squared errors (MSEs) of the regression estimators are presented
for scenarios where the response and left-censored covariates are assumed to follow different known distributions includ-
ing Bernoulli and Gaussian distributions for discrete and continuous outcomes, and Gaussian and gamma distributions
for left-censored covariates. Empirical results for the nuisance parameters are shown in the Appendix. Section 5 presents
an application of the proposed method using the MIREC data introduced earlier. Section 6 concludes the paper with some
discussions.

2 MODEL, NOTATION, AND METHOD

2.1 Complete data
Suppose the elements of the observed response vector y = ( y1, … , yn)′ are independent and follow a distribution in the
exponential family18

𝑓𝑦i|xi (𝑦i|xi, 𝜷, 𝜙) = exp
{

𝑦i𝜃i − b(𝜃i)
a(𝜙)

+ c(𝑦i, 𝜙)
}

, (1)
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for some functions a, b, and c, where the canonical parameter 𝜃i = x′
i𝜷, with x′

i being the ith row of the design matrix X for
the fixed effects, which may contain 1 to incorporate an intercept term. The log-likelihood function for (1) is obtained as

l(𝜷, 𝜙|y,X) =
n∑

i=1

{
𝑦i𝜃i − b(𝜃i)

a(𝜙)
+ c(𝑦i, 𝜙)

}
. (2)

In many practical situations including binary and Poisson regression models, the dispersion parameter 𝜙 is fixed at unity.
Therefore, we choose 𝜙 = 1, for simplicity. In some situations, however, it may be necessary to estimate 𝜙 as a dispersion
parameter of the marginal distribution of the response vector y. From (2), the maximum likelihood estimating equation
for 𝜷 is given by

n∑
i=1

{𝑦i − 𝜇i(𝜷, xi)} xi = 𝟎, (3)

where 𝜇i(𝜷, xi) is the ith mean response, 𝜇i(𝜷, xi) = E(yi|xi, 𝜷) = b′(𝜃i). Equation (3) can be solved numerically using
an iterative method, such as the iteratively reweighted least squares method, given by

𝜷̂ (k+1) =
{

X′W
(
𝜷̂ (k))X

}−1X′W
(
𝜷̂ (k)) z

(
𝜷̂ (k)) , (4)

for k = 0, 1, 2, … , where W(𝜷) is an n × n diagonal matrix with its ith diagonal element wi = var( yi) and z(𝜷) =
(z1, … , zn)

′ is a vector of “pseudo-observations” with its ith element zi = 𝜃i + (yi − 𝜇i)∕var( yi). An approximate variance
of the maximum likelihood estimator 𝜷̂ may be obtained as

var(𝜷̂) =
{

X′W(𝜷̂)X
}−1

.

The estimator 𝜷̂ has an asymptotic normal distribution with mean 𝜷 and variance var(𝜷̂). In the next section, we con-
sider the fact that some covarites are measured with the LOD resulting in left-censored values. We address this issue of
left-censoring when finding the maximum likelihood estimators of the model parameters.

2.2 Estimation with left-censored covariates
Let {( yi, xi); i = 1, … ,n} denote the data that would occur in the absence of censored values. To denote the censoring
status, consider a vector of indicator variables vi = (vi1, … , vip)′ whose jth element vi j is 1 if the corresponding value of
the covariate xi j is observed (ie, if xi j ≥ cj) and vi j is 0 if xi j is left censored (ie, if xi j ≤ cj), where cj's are known constants.
We assume that the marginal distribution of the jth binary indicator, ie, vi j, is Bernoulli with “success” probability 𝜋i j =
P(vi j = 1) = P(xi j ≥ cj). To define the joint distribution of the p binary indicators (vi1, … , vip), we consider a Bahadur
type multivariate binary distribution.19 For example, when p = 3, the Bahadur multivariate density of vi = (vi1, vi2, vi3)

′

has the form

𝑓vi (vi|𝝉) =
{ 3∏

𝑗=1
𝜋

vi𝑗
i𝑗 (1 − 𝜋i𝑗)(1−vi𝑗 )

}
{1 + 𝜌12zi1zi2 + 𝜌13zi1zi3 + 𝜌23zi2zi3 + 𝜌123zi1zi2zi3}, (5)

where

zi𝑗 =
vi𝑗 − 𝜋i𝑗√
𝜋i𝑗(1 − 𝜋i𝑗)

,

𝜌𝑗k = corr(vi𝑗 , vik) =
E
{
(vi𝑗 − 𝜋i𝑗)(vik − 𝜋ik)

}√
𝜋i𝑗(1 − 𝜋i𝑗)𝜋ik(1 − 𝜋ik)

,

𝜌123 = E{(vi1 − 𝜋i1)(vi2 − 𝜋i2)(vi3 − 𝜋i3)}√
𝜋i1(1 − 𝜋i1)𝜋i2(1 − 𝜋i2)𝜋i3(1 − 𝜋i3)

,

for j, k = 1, 2, 3. Let xobs,i denote the observed values and xlod,i the left-censored values of xi. Assuming arbitrary, non-
monotone patterns of censoring for xi, some permutation of the indices of xi may be written as xi = (xobs,i, xlod,i), where
xlod,i is a pi × 1 vector of left-censored values of xi. The vector of covariates xi is assumed to follow a density function
𝑓xi (xi|𝜶), depending on parameters 𝜶. Our focus is on the regression parameters 𝜷, with 𝜶 and 𝝉 being viewed as nuisance
parameters.
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For the ith observation, the actual observed data consist of values of the variables ( yi, xobs,i, vi). The distribution of the
observed data is obtained by integrating xlod,i out of the joint density of ( yi, xi, vi), that is,

𝑓𝑦i,xi,vi (𝑦i, xobs,i, vi|𝜷,𝜶, 𝝉) = ∫
c

−∞
𝑓𝑦i|xi(𝑦i|xobs,i, xlod,i, 𝜷)𝑓xi(xobs,i, xlod,i|𝜶)𝑓vi (vi|𝝉)dxlod,i, (6)

where c is a vector of pi elements representing the upper limits of integration, obtained from the corresponding LOD
values of the left-censored covariates xlod,i. The full likelihood of 𝜸 = (𝜷,𝜶, 𝝉) is any function of 𝜸 proportional to the
products of (6) for all n observations

Lfull(𝜸|y,Xobs, v) ∝
n∏

i=1
𝑓𝑦i,xi,vi (𝑦i, xobs,i, vi|𝜸), (7)

where Xobs = {xobs,i; i = 1, … ,n} and v = {vi; i = 1, … ,n}. This likelihood cannot usually be evaluated in a closed
form because the density 𝑓𝑦i,xi,vi (𝑦i, xobs,i, vi|𝜸) of the observed data for the ith unit has an integral with dimension equal
to the dimension of xlod,i. The maximum likelihood estimators of 𝜸 may be obtained by numerically maximizing the full
likelihood function (7). We develop an iterative algorithm to calculate the maximum likelihood estimators. For this, we
can write the likelihood score function for 𝜸 in the form

U(𝜸) =
n∑

i=1

𝜕

𝜕𝜸
log∫

c

−∞
𝑓𝑦i|xi(𝑦i|xobs,i, xlod,i, 𝜷)𝑓xi(xobs,i, xlod,i|𝜶)𝑓vi (vi|𝝉)dxlod,i

=
n∑

i=1
∫

c

−∞
B(𝜸, x lod,i)𝑓xl,i|𝑦i,xo,i,vi (xlod,i|𝑦i, xobs,i, vi; 𝜸)dxlod,i, (8)

where B(𝜸, xlod,i) represents the “complete data” score vector, given by

B(𝜸, xlod,i) =
𝜕

𝜕𝜸

{
log𝑓𝑦i|xi(𝑦i|xobs,i, xlod,i, 𝜷) + log𝑓xi (xobs,i, xlod,i|𝜶) + log𝑓vi (vi|𝝉)} ,

and 𝑓xl,i|𝑦i,xo,i,vi (xlod,i|𝑦i, xobs,i, vi; 𝜸) is the conditional density of the vector of covariates xlod,i, given the observed data
( yi, xobs,i, vi). This density function does not have a closed form, and numerical methods may be needed to calculate
the log-likelihood function, score function, and Fisher information. Given some initial estimates 𝜸(0), we can find the
maximum likelihood estimator of 𝜸 by solving the Newton-Raphson iterative equations

𝜸(k+1) = 𝜸(k) −
{

U (1) (𝜸(k))}−1U
(
𝜸(k)

)
, (9)

for k = 0, 1, 2, … , where U(𝜸(k)) is the likelihood score function U(𝜸) evaluated at 𝜸(k) and U(1)(𝜸(k)) is the first derivative of
the score function U(𝜸) with respect to 𝜸, evaluated at 𝜸(k). Here, the derivative of the score function provides the observed
Fisher information matrix defined by I(𝜸) = −U(1)(𝜸). After some algebra, this Fisher information may be expressed in
the form

−I(𝜸) =
n∑

i=1
∫

c

−∞

𝜕B(𝜸, xlod,i)
𝜕𝜸

𝑓xl,i|𝑦i,xo,i,vi (xlod,i|𝑦i, xobs,i, vi; 𝜸)dxlod,i

+
n∑

i=1
∫

c

−∞
B(𝜸, x lod,i)B′(𝜸, x lod,i)𝑓xl,i|𝑦i,xo,i,vi (xlod,i|𝑦i, xobs,i, vi; 𝜸)dxlod,i

−
n∑

i=1
∫

c

−∞
B(𝜸, x lod,i)𝑓xl,i|𝑦i,xo,i,vi (xlod,i|𝑦i, xobs,i, vi; 𝜸)dxlod,i

× ∫
c

−∞
B′(𝜸, x lod,i)𝑓xl,i|𝑦i,xo,i,vi (xlod,i|𝑦i, xobs,i, vi; 𝜸)dxlod,i.

Here, the integrations involving the score and Fisher information may be performed numerically using existing software.
We use the R function “integrate” for the numerical integration. Based on some initial estimate 𝜸(0) of 𝜸, we continue iter-
ations (9) until a convergence is met. The initial estimates may be chosen as the ordinary maximum likelihood estimates
for “complete case” data with no LOD observations. At convergence, we obtain the maximum likelihood estimators of the
parameters 𝜸, denoted by 𝜸̂. The large-sample variance-covariance matrix of the maximum likelihood estimator 𝜸̂ may be
obtained from the observed Fisher information given by Var(𝜸̂) = I−1(𝜸), which may be approximated by evaluating the
variance function at the likelihood estimator 𝜸̂ as V̂ar(𝜸̂) = I−1(𝜸̂).
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2.3 Asymptotics
Under the assumption that the response and covariate distributions are correctly specified, it is typically the case that,
as the sample size n increases, the maximum likelihood estimator 𝜸̂ is consistent and follows an asymptotic normal
distribution with mean vector 𝜸 and covariance matrix I−1(𝜸)

𝜸̂ ∼̇N
(
𝜸, I−1(𝜸)

)
,

where I(𝜸) is the Fisher information as defined earlier. We study finite-sample properties of the maximum likelihood
estimators using Monte Carlo simulations in Section 4. The empirical results justify the use of normal theory inference
procedure for the maximum likelihood estimators in the setting of generalized linear models with left-censored covariates.

3 ILLUSTRATIVE EXAMPLE

This section provides some computational details for fitting a simple binary regression model with covariates that are
subject to the LOD. Consider a binary model with two covariates x1 and x2

𝑦i|xi1, xi2 ∼ independent Bernoulli (𝜇i), i = 1, … ,n,

𝜃i = log
(

𝜇i

1 − 𝜇i

)
= 𝛽0 + 𝛽1xi1 + 𝛽2xi2. (10)

In this setup, E( yi) = 𝜇i and var( yi) = 𝜇i(1 − 𝜇i). Suppose the covariates xi1 and xi2 are left censored due to the LOD.
The covariates are assumed to follow a bivariate normal distribution with means E(xi1) = 𝜇x1 and E(xi2) = 𝜇x2 , and with
corresponding variances var(xi1) = 𝜎2

x1
, var(xi2) = 𝜎2

x2
, and cov(xi1, xi2) = 𝜎x1x2 . Let vi j ( j = 1, 2) denote an indicator

variable, with vi j = 1 when xi j is observed (ie, xi j ≥ cj) and vi j = 0 when xi j is left censored (ie, xi j ≤ cj), with
E(vi𝑗) = 𝜋i𝑗 = P(xi𝑗 ≥ c𝑗) = 1 − Φ((c𝑗 − 𝜇x𝑗 )∕𝜎x𝑗 ), where Φ is the cumulative distribution function of the standard normal
distribution. We further assume that the vector of indicator variables vi = (vi1, vi2)

′ follows a bivariate Bahadur model

𝑓vi (vi|𝜶,𝝆) =
{ 2∏

𝑗=1
𝜋

vi𝑗
i𝑗 (1 − 𝜋i𝑗)(1−vi𝑗 )

}(
1 + 𝜌

(vi1 − 𝜋i1)(vi2 − 𝜋i2)√
𝜋i1𝜋i2(1 − 𝜋i1)(1 − 𝜋i2)

)
, (11)

where 𝜌 is the correlation between vi1 and vi2, and 𝜶 = (𝜇x1 , 𝜇x1 , 𝜎x1 , 𝜎x2 , 𝜎x1x2 )
′ is the vector of nuisance parameters of the

distribution of (xi1, xi2), which are estimated simultaneously along with the regression coefficients 𝜷 = (𝛽0, 𝛽1, 𝛽2)
′ for the

binary regression model (10).
From (8), the likelihood score equations for 𝜷 take the form

n∑
i=1

∫
c

−∞
{𝑦i − 𝜇i(𝜷, xi)} xi𝑓xl,i|𝑦i,xo,i,vi (xlod,i|𝑦i, xobs,i, vi; 𝜸)dxlod,i = 𝟎, (12)

where 𝜸 = (𝜷,𝜶, 𝜌). These equations can be solved numerically using the Newton-Raphson iterative equations

𝜷(k+1) = 𝜷 (k) +

{ n∑
i=1

∫
c

−∞
wi

(
𝜷̂ (k)) xix′

i𝑓xl,i|𝑦i,xo,i,vi

(
xlod,i|𝑦i, xobs,i, vi; 𝜸(k)

)
dx lod,i

}−1

×
n∑

i=1
∫

c

−∞
wi

(
𝜷̂ (k)) xi

{
𝑦i − 𝜇i

(
𝜷 (k), xi

)}
𝑓xl,i|𝑦i,xo,i,vi

(
xlod,i|𝑦i, xobs,i, vi; 𝜸(k)

)
dx lod,i, (13)

for k = 0, 1, 2, … , where the weights are given by wi(𝜷) = 𝜇i(𝜷, xi)(1 − 𝜇i(𝜷, xi)) and the conditional density
𝑓xl,i|𝑦i,xo,i,vi (xlod,i|𝑦i, xobs,i, vi; 𝜸) is obtained as

𝑓xl,i|𝑦i,xo,i,vi (xlod,i|𝑦i, xobs,i, vi; 𝜸) =
𝑓𝑦i|xi(𝑦i|xobs,i, xlod,i; 𝜷)𝑓xi(xobs,i, xlod,i|𝜶)𝑓vi (vi|𝜶, 𝜌)

∫ c
−∞ 𝑓𝑦i|xi (𝑦i|xobs,i, xlod,i;𝜷)𝑓xi (xobs,i, xlod,i|𝜶)𝑓vi (vi|𝜶, 𝜌)dxlod,i

=
𝑓𝑦i|xi(𝑦i|xobs,i, xlod,i; 𝜷)𝑓xi(xobs,i, xlod,i|𝜶)

∫ c
−∞ 𝑓𝑦i|xi (𝑦i|xobs,i, xlod,i;𝜷)𝑓xi (xobs,i, xlod,i|𝜶))dxlod,i

.

The initial values of the regression parameters, ie, 𝜷(0), may be chosen as the ordinary maximum likelihood estimates of
the regression parameters obtained by substituting the left-censored values of the covariates x1 and x2 with corresponding
(1∕2)LOD values 0.5c1 and 0.5c2, respectively, and by treating them as actual complete data.
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To estimate the vector of nuisance parameters 𝜶∗ = (𝜶, 𝜌), following Equation (8), we solve the likelihood score
equations

n∑
i=1

∫
c

−∞

𝜕

𝜕𝜶∗

{
log𝑓xi (xi|𝜶) + log𝑓vi (vi|𝜶, 𝜌)}𝑓xl,i|𝑦i,xo,i,vi (xlod,i|𝑦i, xobs,i, vi; 𝜸)dxlod,i = 𝟎, (14)

with respect to 𝜶∗ using an iterative equation similar to (13).
Note that, as we consider only two covariates in the binary model (10), it is not very tedious to find the exact maximum

likelihood estimates by evaluating the integrals within the iterative equations using a numerical integration technique.
Therefore, for our numerical analysis discussed in the next two sections, we consider finding the exact estimates of the
model parameters. For high-dimensional integration involving multiple covariates, however, the iterative method would
require intensive computation. Some resampling algorithms, such as the Metropolis-Hastings algorithm (see, eg, the work
of McCulloch20), may be used to approximate the high-dimensional integrals and hence to obtain approximate values of
the corresponding maximum likelihood estimators.

4 SIMULATION STUDY

To investigate the performance of the proposed method, we conducted a series of Monte Carlo simulations based on the
following two binary regression models.

i. 𝑦i|xi1 ∼ ind. Bernoulli(𝜇i); log{𝜇i∕(1 − 𝜇i)} = 𝛽0 + 𝛽1xi1;
ii. 𝑦i|xi1, xi2 ∼ ind. Bernoulli(𝜇i); log{𝜇i∕(1 − 𝜇i)} = 𝛽1 + 𝛽2xi1 + 𝛽2xi2,

for i = 1, … ,n, where the regression parameters were fixed at 𝛽0 = −2, 𝛽1 = 0.5, and 𝛽2 = 1. The values of the
covariates (xi1, xi2) were generated from a bivariate normal distribution with means E(xi1) = 𝜇x1 = 0 and E(xi2) = 𝜇x2 = 2,
and covariance terms var(xi1) = 𝜎2

x1
= 1, var(xi2) = 𝜎2

x2
= 2, and cov(xi1, xi2) = 𝜎x1x2 = 0.25. The response yi was considered

fully observed, whereas the covariates were assumed left censored due to the LOD. We chose the LOD values so that
the overall proportion of left-censored covariates was either 0.3 or 0.5 for each of the aforementioned two models. For
example, when the covariate x1 ∼ N(0, 1), we can choose the LOD values Φ−1(0.3) = −0.5244 and Φ−1(0.5) = 0 so as to
get 30% and 50% left-censored values of the covariate, respectively. We ran the simulations for each combination of the
sample sizes n = 100, 200, 500. Each simulation run was based on 1000 replicates of datasets. The statistical software
R version 3.1.1 was used for the numerical study. An R program to compute parameter estimates for generalized linear
models with nondetects is available from the authors upon request.

We compared the following three methods.

1. Naive method (N): The ordinary maximum likelihood estimates of the model parameters are found by replacing the
left-censored values of the covariates with the (1∕2)LOD value and by treating them as actual complete data.

2. Nonweighted method (NW): The maximum likelihood estimates are found by ignoring the “weight” 𝑓vi (vi|𝝉) in
Equation (6), that is, by maximizing the likelihood

L0 =
n∏

i=1
∫

c

−∞
𝑓𝑦i|xi (𝑦i|xobs,i, xlod,i, 𝜷)𝑓xi (xobs,i, xlod,i|𝜶)dxlod,i.

3. Weighted method (W): The proposed estimates are found by maximizing the full likelihood function (7).

Figure 1 exhibits the empirical biases of the estimators of the regression parameters 𝛽0 and 𝛽1, and nuisance parameters
𝜇x1 and 𝜎x1 for various proportions (0.1 − 0.6) of the left-censored (LOD) covariate x1, where we assume a binary response
yi with success probability 𝜇i, which is related to the covariate xi1 by the logit link function log(𝜇i∕(1 − 𝜇i)) = 𝛽0 + 𝛽1xi1.
We assume that xi1 follows an independent N(𝜇x1 , 𝜎

2
x1
) distribution. The values of the model parameters were fixed at

𝛽0 = −2, 𝛽1 = 0.5, 𝜇x1 = 0, and 𝜎x1 = 1. It is clear from the figure that the naive method (N) produces systematic biases of
the estimators for all model parameters and sample sizes considered. The other two methods (NW and W) produce slight
biases of the regression estimators for a smaller sample size (n = 100). However, these biases tend to decrease when the
sample size increases. As expected, both NW and W methods appear to be roughly unbiased for large samples.

Table 1 supplements the results in Figure 1 by presenting the empirical biases and MSEs of the estimators of the regres-
sion coefficients 𝛽0 and 𝛽1 for the binary regression model with a left-censored (LOD) covariate x1 by considering two
proportions of LOD, ie, 0.3 and 0.5. Table A1 in the Appendix presents the empirical results for estimators of the nuisance
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(A) (B)

(C) (D)

FIGURE 1 Empirical biases of estimators of regression parameters 𝛽0 and 𝛽1, and nuisance parameters 𝜇x1
and 𝜎x1

for various proportions
of left-censored (LOD) covariate x1. Binary response yi is used with success probability 𝜇i, where log(𝜇i∕(1 − 𝜇i)) = 𝛽0 + 𝛽1xi1 and
xi1 ∼ ind. Normal(𝜇x1

, 𝜎2
x1
). Parameters were fixed at 𝛽0 = −2, 𝛽1 = 0.5, 𝜇x1

= 0, and 𝜎x1
= 1. A, E(𝛽0) − 𝛽0; B, E(𝛽1) − 𝛽1; C, E(𝜇̂x1

) − 𝜇x1
;

D, E(𝜎̂x1
) − 𝜎x1

. LOD, limit of detection; NW, nonweighted; W, weighted [Colour figure can be viewed at wileyonlinelibrary.com]

parameters 𝜇x1 and 𝜎x1 of the covariate distribution. It is clear from the tables that the naive method (N) provides system-
atic biases and large MSEs for all estimators. Furthermore, both bias and MSE tend to increase when the proportion of
the LOD increases. For example, when estimating 𝛽1 at the sample size n = 200, it appears from Table 1 that the naive
method gives biases of −0.1805 (36% relative bias) and −0.2367 (47% relative bias) for the LOD proportions 0.3 and 0.5,
respectively. The corresponding biases from the nonweighted method (NW) are −0.0027 and −0.0042, and that from the
weighted method (W) are −0.0028 and −0.0044, which indicate that the NW and W methods are roughly unbiased. Both
NW and W methods also appear to be equally efficient for large samples in terms of the MSEs. For small samples, how-
ever, the W method appears to give smaller biases and MSEs of the regression estimators, as compared to the NW method.
For example, when estimating 𝛽1 at the sample size n = 100 and with the LOD proportion 0.5, the NW method gives a

http://wileyonlinelibrary.com
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TABLE 1 Empirical biases and mean squared errors (MSEs) of estimators of
regression parameters 𝛽0 and 𝛽1 for two proportions (0.3, 0.5) of left-censored (limit
of detection (LOD)) covariate x1. Response yi ∼ ind. Bernoulli(𝜇i) with the logit link
log(𝜇i∕(1 − 𝜇i)) = 𝛽0 + 𝛽1x1i and covariate xi1 ∼ ind.Normal(𝜇x1

, 𝜎2
x1
). Parameters

are fixed at 𝛽0 = −2, 𝛽1 = 0.5, 𝜇x1
= 0, and 𝜎2

x1
= 1. (N = Naive method; NW =

Nonweighted method; W = Weighted method)

Bias MSE
n LOD Method 𝜷̂𝟎 𝜷̂𝟏 𝜷̂𝟎 𝜷̂𝟏

100 0.3 N 0.0482 −0.1500 0.1343 0.1050
NW −0.0878 0.0049 0.1436 0.1366
W −0.0876 0.0047 0.1436 0.1365

0.5 N 0.1344 −0.2347 0.2936 0.1308
NW −0.1012 −0.0131 0.3031 0.2125
W −0.0987 −0.0122 0.2513 0.1953

200 0.3 N 0.1248 −0.1805 0.0707 0.0626
NW −0.0201 −0.0027 0.0606 0.0560
W −0.0200 −0.0028 0.0605 0.0559

0.5 N 0.2145 −0.2367 0.1015 0.0760
NW −0.0215 −0.0042 0.0619 0.0629
W −0.0213 −0.0044 0.0619 0.0629

500 0.3 N 0.1298 −0.1758 0.0371 0.0420
NW −0.0239 0.0134 0.0237 0.0213
W −0.0239 0.0134 0.0237 0.0213

0.5 N 0.2213 −0.2303 0.0694 0.0604
NW −0.0234 0.0109 0.0242 0.0233
W −0.0233 0.0108 0.0242 0.0233

bias of −0.0131 and an MSE of 0.2125, whereas the W method provides a slightly smaller bias of −0.0122 and a smaller
MSE of 0.1953.

Table 2 presents the empirical biases and MSEs of the estimators of the regression coefficients 𝛽0, 𝛽1, and 𝛽2 for the
binary regression model with two left-censored covariates x1 and x2. Table A2 in the Appendix presents the empirical
results for the nuisance parameters 𝜇x1 , 𝜇x1 , 𝜎x1 , 𝜎x2 , and 𝜌x1x2 = corr(x1, x2) of the bivariate normal distribution for the
left-censored covariates. We assume that the binary response yi has the success probability 𝜇i, which is related to the
covariates xi1 and xi2 by the logit link function log(𝜇i∕(1−𝜇i)) = 𝛽0 +𝛽1xi1 +𝛽2xi2. The values of the parameters were fixed
at 𝛽0 = −2, 𝛽1 = 0.5, 𝛽2 = 1, 𝜇x1 = 0, 𝜇x2 = 2, 𝜎2

x1
= 1, 𝜎2

x2
= 2, and 𝜎x1x2 = 0.5. Here, also, we observe that, unlike the NW

and W methods, the naive method (N) provides systematically large biases and MSEs for all regression coefficients and
nuisance parameters considered. For example, when n = 200 and LOD=0.3, for estimating the regression parameter 𝛽1,
as shown in Table 2, the naive method (N) provides a bias of −0.2169 (43% relative bias) and an MSE of 0.0613, whereas
the nonweighted (NW) provides a bias of 0.0172 and an MSE of 0.0497 and the weighted (W) method provides a bias of
0.0170 and an MSE of 0.0497. The NW and W methods appear to be almost equally efficient in terms of biases and MSEs
for all the model parameters.

It is interesting to note that, in some cases the naive method provides lower MSEs of the regression parameters, as
compared to the other two methods. For example, in Table 1, for n = 100 and LOD=0.3, when estimating the slope
parameter 𝛽1, the naive method (N) provides an MSE of 0.1050, which is smaller than MSEs 0.1366 and 0.1365 obtained
by the nonweighted (NW) and weighted (W) methods, respectively. This artificially smaller MSE obtained by the naive
method is due to the fact that the method generally provides systematic biases that lead to “shrinkage estimators” of
the model parameters. Here, it is clear that the naive method (N) provides a large bias of −0.1500 (30 relative bias)%, as
compared to very small biases of 0.0049 and 0.0047 as obtained by the nonweighted (NW) and weighted (W) methods,
respectively. When the sample size n and percentage of LOD both increase, the naive method (N) appears to provide worst
results in terms of much larger systematic biases and larger MSEs as compared to the other two methods. For example,
in Table 1, for n = 500 and LOD=0.5, when estimating the slope parameter 𝛽1, the naive method (N) provides a bias of
−0.2303 (46% relative bias) and an MSE of 0.0604, whereas the nonweighted (NW) provides a bias of 0.0109 and an MSE
of 0.0233 and the weighted (W) method provides a bias of 0.0108 and an MSE of 0.0233.
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TABLE 2 Empirical biases and mean squared errors (MSEs) of estimators of regression
parameters 𝛽0, 𝛽1, and 𝛽2 for two proportions (0.3, 0.5) of left-censored (limit of detection (LOD))
covariates x1 and x2. Response yi ∼ ind. Bernoulli(𝜇i) with the logit link
log(𝜇i∕(1 − 𝜇i)) = 𝛽0 + 𝛽1xi1 + 𝛽2xi2 and (xi1, xi2) are bivariate normal with means (𝜇x1

, 𝜇x2
) and

covariance terms 𝜎2
x1

, 𝜎2
x2

, and 𝜎x1x2
. Parameters are fixed at 𝛽0 = −2, 𝛽1 = 0.5, 𝛽2 = 1, 𝜇x1

= 0,
𝜇x2

= 2, 𝜎2
x1
= 1, 𝜎2

x2
= 2, and 𝜎x1x2

= 0.5.(N = Naive method; NW = Nonweighted method; W =
Weighted method)

Bias MSE
n LOD Method 𝜷̂𝟎 𝜷̂𝟏 𝜷̂𝟐 𝜷̂𝟎 𝜷̂𝟏 𝜷̂𝟐

100 0.3 N 0.4022 −0.2084 −0.1077 0.6663 0.0733 0.0971
NW −0.1525 0.0366 0.0710 0.3784 0.1030 0.0681
W −0.1517 0.0362 0.0708 0.3783 0.1030 0.0681

0.5 N 2.1311 −0.2130 −0.5643 4.6472 0.0715 0.3268
NW −0.2261 0.0532 0.1020 0.5507 0.1387 0.1006
W −0.2232 0.0529 0.1011 0.5485 0.1386 0.1001

200 0.3 N 0.4850 −0.2169 −0.1478 0.4529 0.0613 0.0572
NW −0.0749 0.0172 0.0328 0.1450 0.0497 0.0260
W −0.0746 0.0170 0.0327 0.1450 0.0497 0.0260

0.5 N 2.1427 −0.2276 −0.5810 4.6362 0.0644 0.3407
NW −0.0920 0.0117 0.0399 0.2152 0.0625 0.0376
W −0.0908 0.0114 0.0396 0.2150 0.0624 0.0376

500 0.3 N 0.5578 −0.2262 −0.1789 0.3923 0.0564 0.0451
NW −0.0234 0.0016 0.0124 0.0514 0.0178 0.0096
W −0.0232 0.0016 0.0123 0.0514 0.0178 0.0096

0.5 N 2.1497 −0.2300 −0.5854 4.6388 0.0576 0.3439
NW −0.0356 0.0040 0.0173 0.0774 0.0221 0.0135
W −0.0352 0.0039 0.0172 0.0774 0.0221 0.0135

4.1 Results for other response and covariate distributions
So far, we have studied estimators in logistic regression models for binary discrete outcomes with left-censored covariates
that were assumed to be normally distributed. In this section, we extend our simulation study by considering other distri-
butions in the exponential family for modeling the outcomes and covariates, which include the Gaussian distribution for
continuous outcomes and gamma distribution for left-censored covariates. Specifically, we extend our simulations using
two additional models.

• 𝑦i|xi1 ∼ ind. Bernoulli(𝜇i); log{𝜇i∕(1 − 𝜇i)} = 𝛽0 + 𝛽1xi1; xi1 ∼ ind. Gamma(𝛾x1 , 𝜆x1);
• 𝑦i|xi1 ∼ ind. Normal(𝜇i, 𝜎

2); 𝜇i = 𝛽0 + 𝛽1xi1; xi1 ∼ ind. Normal(𝜇x1 , 𝜎
2
x1
),

for i = 1, … ,n. For the logistic model iii, the regression parameters were fixed at 𝛽0 = −1 and 𝛽1 = 1, and the shape
and scale (rate) parameters of the gamma distribution for the covariate xi1 were fixed at 𝛾x1 = 4 and 𝜆x1 = 2, respectively.
For the Gaussian model iv, the linear regression parameters were fixed at 𝛽0 = 1 and 𝛽1 = 2, the variance parameter at
𝜎2 = 1, and the mean and variance of the normal distribution for the covariate xi1 at 𝜇x1 = 2 and 𝜎2

x1
= 1, respectively. As

before, the response yi was considered to be fully observed, and the covariates were considered left censored due to the
LOD. We chose the LOD values of the covariate in such a a way that the overall proportion of the left-censored covarites
was either 0.3 or 0.5 for each of the aforementioned two models. The simulations were carried out for each combination of
the sample sizes n = 100, 200, 500 for the logistic model iii). For the linear model iv, the simulations were based on three
combinations of sample sizes n = 40, 60, 100. Each simulation run was based on a series of 1000 replicates of datasets.

Table 3 presents empirical biases and MSEs for the estimators of the regression parameters 𝛽0 and 𝛽1 for the binary
regression model iii and for a single left-censored gamma covariate x1 with two proportions of LOD, ie, 0.3 and 0.5.
Table A3 in the Appendix presents the corresponding empirical results for the nuisance parameters 𝛾x1 and 𝜆x1 of the
gamma distribution for the left-censored covariate x1. As before, it is clear from the tables that the naive method (N)
generally provides systematic biases and large MSEs for all estimates of the model parameters. Moreover, both bias and
MSE tend to increase when the proportion of LOD increases. For example, when estimating 𝛽1 at sample size n = 200,
it appears from Table 3 that the naive method (N) gives biases of −0.1203 (12% relative bias) and −0.1435 (14% relative
bias) for the LOD proportions 0.3 and 0.5, respectively. The corresponding biases from the nonweighted method (NW)
are 0.0328 and 0.0353, and that from the weighted method (W) are 0.0326 and 0.0351, respectively, which indicate that
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TABLE 3 Empirical biases and mean squared errors (MSEs) of
estimators of regression parameters 𝛽0 and 𝛽1 for two proportions
(0.3, 0.5) of left-censored (limit of detection (LOD)) covariate x1. Response
yi ∼ ind. Bernoulli(𝜇i) with the logit link log(𝜇i∕(1 − 𝜇i)) = 𝛽0 + 𝛽1x1i and
covariate xi1 ∼ ind. Gamma(𝛾x1

, 𝜆x1
). Parameters are fixed at 𝛽0 = −1,

𝛽1 = 1, 𝛾x1
= 4, and 𝜆x1

= 2. (N = Naive method; NW = Nonweighted
method; W = Weighted method)

Bias MSE
n LOD Method 𝜷̂𝟎 𝜷̂𝟏 𝜷̂𝟎 𝜷̂𝟏

100 0.3 N 0.3178 −0.1083 0.3317 0.0869
NW −0.0595 0.0554 0.3771 0.1233
W −0.0583 0.0549 0.3769 0.1233

0.5 N 0.4093 −0.1330 0.4072 0.1003
NW −0.0738 0.0562 0.4817 0.1482
W −0.0724 0.0557 0.4811 0.1479

200 0.3 N 0.3158 −0.1203 0.2092 0.0479
NW −0.0428 0.0328 0.1732 0.0530
W −0.0422 0.0326 0.1730 0.0529

0.5 N 0.4117 −0.1435 0.2805 0.0627
NW −0.0507 0.0353 0.2223 0.0724
W −0.0501 0.0351 0.2225 0.0725

500 0.3 N 0.3220 −0.1304 0.1523 0.0312
NW −0.0252 0.0161 0.0766 0.0223
W −0.0250 0.0160 0.0766 0.0223

0.5 N 0.4215 −0.1543 0.2224 0.0394
NW −0.0247 0.0161 0.0863 0.0262
W −0.0245 0.0160 0.0863 0.0262

the NW and W methods are roughly unbiased. Both NW and W methods also appear to be equally efficient for large sam-
ples in terms of the MSEs. For small samples, however, the W method appears to give smaller biases and MSEs of the
regression estimators, as compared to the NW method. For example, when estimating 𝛽1 at sample size n = 100 and with
the LOD proportion 0.5, the NW method gives a bias of 0.0562 and an MSE of 0.1482, whereas the W method provides a
slightly smaller bias of 0.0557 and a smaller MSE of 0.1479.

Table 4 presents empirical biases and MSEs for the estimators of the regression parameters 𝛽0 and 𝛽1 for the linear
regression model iv and for a single left-censored normal covariate x1 with two proportions of LOD, ie, 0.3 and 0.5. Table A4
in the Appendix presents the corresponding empirical results for the nuisance parameters 𝜇x1 and 𝜎x1 of the normal
distribution for the left-censored covariate x1. Here, also, it is clear from the tables that the naive method (N) provides
systematic biases and large MSEs for all parameter estimates. For example, when estimating 𝛽0 at sample size n = 100, it
appears from Table 4 that the naive method (N) gives biases of 0.2230 (22% relative bias) and 0.5446 (54% relative bias) for
the LOD proportions 0.3 and 0.5, respectively. The corresponding biases from the nonweighted method (NW) are −0.0246
and −0.0285, and that from the weighted method (W) are −0.0212 and −0.0282, respectively, which indicate that the
NW and W methods are roughly unbiased. Both NW and W methods are equally efficient for larger samples. For smaller
samples, the W method generally provides smaller biases in the regression estimators, as compared to the NW method.
For example, when estimating 𝛽1 at sample size n = 40 and with the LOD proportion 0.3, the NW method gives a bias of
0.0155, whereas the W method provides a slightly smaller bias of 0.0138.

5 APPLICATION: MIREC COHORT STUDY

The MIREC study17 recruited around 2000 pregnant women between 2008 and 2011 from 10 sites across Canada. Part-
cipant inclusion criteria were the ability to consent and to communicate in English or French, age 18 years or older,
less than 14 weeks gestation, willing to provide a sample of cord blood, and planning on delivering at a local hospital.
Women with a certain medical history were excluded from the study. Biospecimens were collected during each trimester,
at delivery, and in the early postnatal period. Questionnaires were administered during the first and third trimesters to
collect demographic, lifestyle, medical history, use of natural health products and medications, and potential sources of
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TABLE 4 Empirical biases and mean squared errors (MSEs) of estimators of 𝛽0, 𝛽1,
and 𝜎 for two proportions (0.3, 0.5) of left-censored (limit of detection (LOD))
covariate x1. Response yi ∼ ind. Normal(𝜇i, 𝜎

2) with 𝜇i = 𝛽0 + 𝛽1x1i and covariate
xi1 ∼ ind. Normal(𝜇x1

, 𝜎2
x1
). Parameters are fixed at 𝛽0 = 1, 𝛽1 = 2, 𝜎 = 1, 𝜇x1

= 2,
and 𝜎x1

= 1. (N = Naive method; NW = Nonweighted method; W = Weighted method)

Bias MSE
n LOD Method 𝜷̂𝟎 𝜷̂𝟏 𝝈̂ 𝜷̂𝟎 𝜷̂𝟏 𝝈̂

40 0.3 N 0.2129 −0.0765 0.1069 0.2700 0.0446 0.0319
NW −0.0370 0.0155 −0.0402 0.2815 0.0465 0.0173
W −0.0323 0.0138 −0.0393 0.2831 0.0467 0.0173

0.5 N 0.5575 −0.1846 0.2747 0.5645 0.0771 0.1061
NW −0.0611 0.0288 −0.0426 0.4550 0.0674 0.0228
W −0.0587 0.0281 −0.0410 0.4575 0.0678 0.0228

60 0.3 N 0.2388 −0.0884 0.1245 0.1983 0.0334 0.0292
NW −0.0152 0.0049 −0.0255 0.1693 0.0298 0.0110
W −0.0122 0.0038 −0.0249 0.1690 0.0297 0.0110

0.5 N 0.5439 −0.1812 0.2876 0.4648 0.0607 0.1042
NW −0.0348 0.0161 −0.0346 0.3543 0.0517 0.0155
W −0.0315 0.0150 −0.0336 0.3547 0.0520 0.0154

100 0.3 N 0.2230 −0.0806 0.1368 0.1369 0.0216 0.0274
NW −0.0246 0.0089 −0.0121 0.0978 0.0162 0.0068
W −0.0212 0.0076 −0.0118 0.0984 0.0163 0.0068

0.5 N 0.5446 −0.1826 0.2946 0.4029 0.0504 0.0990
NW −0.0285 0.0111 −0.0258 0.2008 0.0290 0.0087
W −0.0282 0.0110 −0.0252 0.2028 0.0293 0.0087

exposure data. A validated food frequency questionnaire was administered in the second trimester, along with blood and
spot urine collection, blood pressure, clinical laboratory tests, and anthropometric measurements. In this study, we exam-
ined the association between the participants' birth outcomes (BOs) (eg, low birth weight and spontaneous abortion)
and levels of chemical mixtures. We consider a dichotomous response variable y, representing the participants' health
outcome, and covariates (x1, … , xp), measuring the levels of chemical concentrations. Considering a variable with high
proportion of LOD observations provides little information on the model fitting, we therefore excluded those with more
than 70% nondetects.

There were 38 available chemicals with less than 70% nondetects in the MIREC database and we used a backward
elimination procedure based on likelihood deviances to choose the covariates (including the chemical mixtures) in our
regression models that were found to be associated with each of the seven binary health outcomes, ie, (i) BO (0 = delivery
of a live birth; 1 = spontaneous abortion); (ii) glucose tolerance outcome (OGTT_1) (0 = normal; 1 = gestational dia-
betes mellitus (GDM)); (iii) glucose tolerance outcome (OGTT_2) (0 = normal; 1 = impaired glucose tolerance (IGT));
(iv) whether an infant's weight was considered as low birth weight (birth weight ≤ 2500 grams) (LBW) (0 = normal; 1 =
low birth weight); (v) whether an infant is considered large for gestational age (LGA) (0 = normal; 1 = large); (vi) whether
an infant is considered small for gestational age gestational age infant (SGA) (0 = normal; 1 = small); and (vii) whether it
is a preterm birth for singleton live births PreB (0 = gestational age ≥ 37 weeks, 1 = gestational age ≤ 37 weeks). Note that
GDM and IGT were categorized in accordance with guidelines from the Canadian Diabetes Association and the Society
of Obstetricians and Gynaecologists of Canada, as described in the work of Shapiro et al.21 The LGA and SGA categories
were ≤ 10th and ≥ 90th percentiles, respectively, as described in the work of Thomas et al.22 The description, sources,
and units of the chemical concentrations and their summary statistics are presented in Table 5. It is clear from the table
that some of the chemical mixtures included measurements with a high proportion of detection limits. For example, the
chemical dimethylphosphate (DMP) was measured with 21% LOD values, cotinine with 46% LOD values, and dimethy-
larsinic acid (DMAA) with 14% LOD values. The chemical concentrations were found to be positively skewed with a large
variability in the measurements. To reduce the variability, we took the natural logarithm of the chemical concentrations
and used them as covariates in the regression model. The histogram plots (not shown here) of the log-transformed values
were found to be roughly symmetric and bell shaped, and we assumed that they followed a multivariate normal distribu-
tion with unknown mean and variance parameters, which are to be estimated along with the regression parameters by
the proposed joint likelihood method as described earlier.
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TABLE 5 Definitions, sources, and units of chemical concentrations in MIREC study with summary statistics

Abbreviation Description Matrix Units %≤LOD MEAN STD

Plasticisers
MBzP Mono benzyl phthalate Urine 𝜇g/L 0.50% 12.19 25.39
MEOHP Mono-(2-ethyl-5-oxohexyl) phthalate Urine 𝜇g/L 0.28% 15.16 47.96
MEHHP Mono-(2-ethyl-5-hydroxyhexyl) phthalate Urine 𝜇g/L 0.62% 23.52 74.10
Perfluroalkyl substances (PFASs)
PFOA Perfluorooctanoic acid Plasma 𝜇g/L 0.15% 1.95 1.24
PFHxS Perfluorohexane sulfonate Plasma 𝜇g/L 4.12% 1.46 1.88
PCBs
BPC170 2,2',3,3',4,4',5-heptachlorobiphenyl Plasma 𝜇g/L 46.82% 0.02 0.02
Organophosphate Pesticides (OPs)
DMP Dimethylphosphate Urine 𝜇g/L 20.83% 5.26 8.72
Organochlorine Pesticides (OCs)
OXYCHLOR Oxychlordane Plasma 𝜇g/L 7.81% 0.01 0.01
TRANSNONA Trans-nonachlor Plasma 𝜇g/L 15.87% 0.02 0.02
Arsenic species
ASAL Arsenobetaine Urine 𝜇mol/L 51.16% 0.12 0.69
DMAA Dimethylarsinic acid Urine 𝜇mol/L 14.12% 0.05 0.07
Smoking Biomarker
COTISE Cotinine Plasma ng/mL 46.08% 5.98 27.52

Note that the substitution was applied on ≤LOD observations. LOD, limit of detection.

We fitted a binary regression model for each of the seven binary outcomes, ie, BO, OGTT_1, OGTT_2, LBW, LGA,
SGA, and PreB, which were described as functions of the log-transformed values of the chemical mixtures used in the
MIREC study. As the values of the chemical concentrations were left-censored due to the limits of detection, we obtained
the estimates of the model parameters based on the proposed maximum likelihood method by addressing the issue of
left-censoring in the chemical mixtures. To model the binary indicators of nondetects, we used Bahdaur models with sim-
ple “exchangeable” correlation structures. Note that, when describing the associations among the health outcomes and
chemical mixtures, we adjusted the logistic regression models for other demographic variables including being a first-time
mother, mother's smoking status, and prepregnancy BMI. Table 6 presents estimates of the regression parameters and
their corresponding standard errors obtained by each of the three estimation methods, ie, N, NW, and W, as considered
earlier. Moreover, Table A5 in Appendix presents estimates of the nuisance parameters with their corresponding standard
errors. The three methods appear to provide somewhat similar conclusions about the regression coefficients. The naive
method (N), however, produces slightly different estimates than those obtained by the other two methods. For example,
when the response is the BO, the naive method produces the estimated values 0.198 and −0.715 for the effects of the
chemical mixtures COTISE and PFHxS, respectively, whereas the weighted method produces somewhat different esti-
mated values of 0.174 and −0.770, respectively. Here, the discrepancies among the estimated regression coefficients are
due to the fact the chemical COTISE contains a large proportion of left-censored values (46% LOD) in its measurements.
The naive method generally produces systematic biases in the regression estimators in such a case, as we have observed
in the simulation study earlier.

It is clear from Table 6 that some of the health outcomes were associated with the chemical concentrations considered in
the models. For example, higher concentrations of oxychlordane (OXYCHLOR) was associated with an increased risk of
a low birth weight infant. Furthermore, higher concentrations of arsenobetaine (ASAL) was associated with an increased
risk of a small for SGA. In particular, given a fixed value of cotinine, for every one unit increase in the logarithmic value
of oxychlordane, the odds of having a low birth weight infant increases by 1.61 (= exp(0.477)) times, as obtained by the
proposed method (W). Similarly, given a fixed value of perfluorooctanoic acid (PFOA), for every one unit increase in the
logarithmic value of arsenobetaine, the odds of having a small for gestational age baby increases by 1.08 (= exp(0.173))
times. Among the two chemicals trans-nonachlor (TRANSNONA) and 2,2',3,3',4,4',5-heptachlorobiphenyl (BPC170) con-
sidered in the logistic regression model for preterm birth (infants born before 37 weeks), TRANSNONA appears to be
significantly positively associated with the preterm birth (PreB), but the chemical BPC170 negatively associated with the
preterm birth.
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TABLE 6 Estimates of regression parameters (standard errors in parentheses) from logistic
regression fits to MIREC data. (N = Naive method; NW = Nonweighted method; W = Weighted
method)

y x1 x2 Method 𝜷̂0 𝜷̂1 𝜷̂2

BO COTISE PFHxS N −3.918(0.301) 0.199(0.058) −0.831(0.284)
NW −3.917(0.301) 0.174(0.061) −0.874(0.287)
W −3.937(0.294) 0.177(0.063) −0.876(0.288)

OGTT_1 DMAA DMP N −0.960(0.664) 0.582(0.167) −0.574(0.201)

NW −1.185(0.617) 0.533(0.164) −0.565(0.165)
W −1.179(0.616) 0.535(0.164) −0.567(0.164)

OGTT_2 MEOHP MEHHP N −3.905(0.405) −1.931(0.781) 1.819(0.755)
NW −3.909(0.403) −2.017(0.790) 1.891(0.761)
W −3.908(0.403) −2.012(0.790) 1.887(0.761)

LBW OXYCHLOR COTISE N −0.143(0.750) 0.523(0.172) 0.069(0.033)
NW −0.413(0.757) 0.474(0.169) 0.040(0.039)
W −0.411(0.754) 0.477(0.169) 0.038(0.039)

LGA MBzP DMAA N −3.261(0.43) 0.183(0.065) −0.252(0.101)
NW −3.355(0.413) 0.179(0.067) −0.269(0.091)
W −3.352(0.413) 0.179(0.067) −0.269(0.091)

SGA PFOA ASAL N −1.933(0.316) 0.303(0.208) 0.130(0.060)
NW −1.794(0.331) 0.296(0.196) 0.174(0.055)
W −1.794(0.331) 0.295(0.196) 0.173(0.055)

PreB TRANSNONA BPC170 N −1.186(0.784) 0.448(0.175) −0.099(0.185)
NW −1.874(0.697) 0.445(0.175) −0.265(0.139)
W −1.879(0.700) 0.444(0.175) −0.265(0.140)

Note: Bold faced numbers indicate significant coefficients from t-tests of nonzero coefficients at 5% level of signifi-
cance. The seven binary health outcomes are defined as follows: (i) BO: birth outcome (0 = delivery of a live birth;
1 = spontaneous abortion), (ii) OGTT_1: glucose tolerance outcome (0 = normal; 1 = GDM, (iii) OGTT_2: glu-
cose tolerance outcome (0 = normal; 1 = IGT), (iv) LBW: whether an infant's weight was considered as low birth
weight (birth weight ≤ 2500 grams) (0 = normal; 1 = low birth weight), (v) LGA: whether an infant is considered
large for gestational age (0 = normal; 1 = large), (vi) SGA: whether an infant is considered small for gestational age
(0 = normal; 1 = small), and (vii) PreB: whether it is a preterm birth for singleton live births (0 = gestational age ≥
37 weeks; 1 = gestational age ≤ 37 weeks). Based on Akaike information criterion values for model selection, the
adjusted covariate prepregnancy BMI is chosen for all outcome except for outcome SGA, where both the first-time
mother and prepregnancy BMI are chosen by the model selection criteria.

6 DISCUSSION

We often encounter problems of nondetects in clinical and environmental studies, where it is necessary to address the
issue of nondetects for a valid statistical inference. We have developed and studied a novel method for analyzing data in
the framework of generalized linear models with covariates subject to detection limits. The finite-sample properties of the
proposed estimators are investigated using Monte Carlo simulations, where we have shown that our proposed method
generally provides efficient estimators in terms of smaller biases and smaller MSEs as compared to its other competitors.
Among the methods studied, the substitution method is the simplest and it is also easy to implement. However, this naive
method provides estimators that are generally biased and inefficient, and hence is not recommended.

The proposed W method requires an assumption on the joint density function fx(x|𝜶) of the vector of covariates x, where,
in practice, the “true density” is unknown. We have investigated the robustness of the proposed method to violations of the
distributional assumptions. In fact, when the shapes of the individual covariate distributions are roughly symmetric and
bell shaped, their joint distribution can be safely approximated by a multivariate normal distribution. A slight deviation
from normality (eg, when the true distribution is t) may not have much impact on the regression estimators. In the case
of asymmetric distributions of the covariates, we considered using independent gamma distributions, which were found
to be useful for robustly modeling the asymmetry in the distribution. For a completely unknown covariate distribution,
one can also consider approximating the density function by a nonparameteric approach. This, however, is beyond the
scope of the current study.

We have presented an application of the proposed method by analyzing actual data from the MIREC cohort study, where
we investigated the effects of exposure to chemicals on the health outcomes of pregnant women and their newborns in
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Canada. We have found some associations between chemicals and health conditions of pregnant women and their infants.
Specifically, higher concentrations of arsenobetaine, cotinine, dimethylarsinic acid, mono-(2-ethyl-5-hydroxyhexyl)
phthalate (MEHHP), oxychlordane, mono benzyl phthalate (MBzP), perfluorooctanoic acid (PFOA), and trans-nonachlor
appeared to be statistically associated with higher risks of adverse health outcomes. On the other hand, higher con-
centrations of perfluorohexane sulfonate (PFHxs), DMP, mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP), and DMAA
were statistically associated with lower risks of spontaneous abortion, GDM, IGT, and delivering a large infant,
respectively.

Our Monte Carlo study indicates that the proposed weighted (W) method is generally more efficient than the non-
weighted (NW) method when the sample size is small. The two methods appear to be equally efficient for larger samples
as considered in the simulations. Further study of the models (not shown here) showed that, when a model contains mul-
tiple covariates with different proportions of nondetects, the W method generally performs better than the NW method
irrespective of the sample size. This behavior is also observed in the MIREC data analysis, where measurements were
obtained from a large group of n = 1983 individuals. As can be seen from Table 6, when fitting the response OGTT_2
as a function of the chemicals MEOHP and MEHHP with different proportions of nondetects (28% LOD for MEOHP and
62% LOD for MEHHP), the proposed W method provides estimates of the regression coefficients with smaller standard
errors as compared to the NW method.

In observational epidemiological studies, in addition to a group of main factors of interest, it is common to adjust for
potential confounding factors. In order for a variable to be considered as a confounder23 (i) the variable must be indepen-
dently associated with the outcome (ie, be a risk factor); (ii) the variable must be associated with the exposure under study
in the source population, that is, it must be unequally distributed between exposure groups; and (iii) it should not lie on the
causal pathway between exposure and disease. In the MIREC analysis, we studied the effects of the chemical contaminants
on the health outcomes based on logistic regression models, where we considered adjusting the models for the effects of
some demographic variables, which included the binary indicators being a first-time mother (parity), mother's smoking
status, and prepregnancy BMI. The variables to be included in the models were chosen by the likelihood-based Akaike
information criterion for model selection, rather than the Change-in-Estimate criterion24 for identifying confounders. The
effects of the contaminants examined in the paper remain after adjusting for those variables. Further research needs to
be done to evaluate the best approach for identifying and controlling for potential confounders in models with multiple
chemical exposures.

Note that, for describing the joint distribution of the binary indicators v = (v1, … , vp)
′ of nondetects, we have used

a multivariate Bahadur model for correlated binary data. The Bahadur model is attractive in that, under this model, the
marginal distribution of the individual binary outcome vj is a simple Bernoulli distribution with the probability of suc-
cess 𝜋j. In fact, when the associations among the binary indicators are not strong enough, the joint Bahadur distribution
may be simply approximated by the product of individual Bernoulli distributions of the binary indicators (v1, … , vp).
The choice of the association parameters for the Bahadur model is a practical issue. For left-censored covariates as con-
sidered in this article, we recommend a simple “working correlation” structure, such as the exchangeable correlation
structure, for the multivariate binary outcomes. We, however, have not studied in detail yet how the proposed W method
under a “misspecified Bahadur model” would compare with the NW method, where the NW method provides consistent
estimators irrespective of the distribution of the binary indicators of nondetects. From a limited simulation study (not
shown here), we found that, in the case of weak correlations among the binary indicators, the assumption of “working
independence” also leads to efficient estimators of the model parameters.

An important feature of the chemical exposure data is that measurements on the exposures included a number of
extreme observations. It would be interesting to investigate how the classical estimators are influenced by the extreme
observations or “outliers” in the data. In the presence of “influential outliers” in the data, a robust method may be explored
to bound the influence of such outliers. Work remains to be done in this direction. We intend to develop a robust method
for censored data in future research.
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APPENDIX

Tables A1–A5: Simulation results for estimators of nuisance parameters

TABLE A1 Empirical biases and mean squared errors (MSEs) of estimators of
nuisance parameters 𝜇x1

and 𝜎x1
for two proportions (0.3, 0.5) of left-censored (limit of

detection (LOD)) covariate x1. Response yi ∼ ind. Bernoulli(𝜇i) with the logit link
log(𝜇i∕(1 − 𝜇i)) = 𝛽0 + 𝛽1x1i and covariate xi1 ∼ ind. Normal(𝜇x1

, 𝜎2
x1
). Parameters are

fixed at 𝛽0 = −2, 𝛽1 = 0.5, 𝜇x1
= 0, and 𝜎2

x1
= 1. (N = Naive method; NW =

Nonweighted method; W = Weighted method)

Bias MSE
n LOD Method 𝝁̂x1

𝝈̂x1
𝝁̂x1

𝝈̂x1

100 0.3 N −0.4809 0.5979 0.2552 0.3625
NW −0.0021 −0.0015 0.0109 0.0079
W −0.0031 −0.0008 0.0111 0.0080

0.5 N −0.8493 0.6959 0.7491 0.4867
NW −0.0031 −0.0020 0.0152 0.0120
W −0.0045 −0.0013 0.0153 0.0120

200 0.3 N −0.4801 0.5988 0.2437 0.3611
NW −0.0006 −0.0039 0.0059 0.0040
W −0.0011 −0.0036 0.006 0.0040

0.5 N −0.8515 0.6982 0.7396 0.4887
NW −0.0013 −0.0038 0.0076 0.0058
W −0.0022 −0.0034 0.0076 0.0058

500 0.3 N −0.4805 0.6030 0.2357 0.3646
NW −0.0003 −0.0004 0.0021 0.0016
W −0.0003 −0.0004 0.0022 0.0016

0.5 N −0.8511 0.7017 0.7300 0.4929
NW −0.0013 0.0002 0.0029 0.0024
W −0.0014 0.0003 0.0030 0.0025

TABLE A2 Empirical biases and mean squared errors (MSEs) of estimators of nuisance parameters 𝜇x1
, 𝜇x1

, 𝜎x1
, 𝜎x2

, and
𝜌x1x2

= corr(x1, x2) for two proportions (0.3, 0.5) of left-censored (limit of detection (LOD)) covariates x1 and x2. Response
yi ∼ ind. Bernoulli(𝜇i) with the logit link log(𝜇i∕(1 − 𝜇i)) = 𝛽0 + 𝛽1xi1 + 𝛽2xi2 and (xi1, xi2) are bivariate normal with means (𝜇x1

, 𝜇x2
)

and covariance terms 𝜎2
x1

, 𝜎2
x2

, and 𝜎x1x2
. Parameters are fixed at 𝛽0 = −2, 𝛽1 = 0.5, 𝛽2 = 1, 𝜇x1

= 0, 𝜇x2
= 2, 𝜎2

x1
= 1, 𝜎2

x2
= 2, and

𝜎x1x2
= 0.5. (N = Naive method; NW = Nonweighted method; W = Weighted method)

Bias MSE
n LOD Method 𝝁̂x1

𝝈̂x1
𝝁̂x2

𝝈̂x2
𝝆̂x1x2

𝝁̂x1
𝝈̂x1

𝝁̂x2
𝝈̂x2

𝝆̂x1x2

100 0.3 N −0.4801 0.5899 −0.4243 0.7348 −0.0321 0.2555 0.3558 0.2622 0.5895 0.0101
NW −0.0052 −0.0020 −0.0019 −0.0087 −0.0006 0.0108 0.0078 0.0447 0.0272 0.0098
W −0.0063 −0.0014 −0.0039 −0.0072 −0.0006 0.0113 0.0079 0.0467 0.0283 0.0098

0.5 N −0.8432 0.6846 −1.6719 1.3656 −0.0549 0.7416 0.4751 2.9311 1.8900 0.0130
NW −0.0054 −0.0034 0.0013 −0.0170 −0.0015 0.0150 0.0124 0.0637 0.0483 0.0135
W −0.0072 −0.0026 −0.0019 −0.0157 −0.0016 0.0151 0.0125 0.0645 0.0487 0.0135

200 0.3 N −0.4831 0.6019 −0.4362 0.7542 −0.0327 0.2463 0.3649 0.2309 0.5900 0.0055
NW −0.0024 −0.0001 −0.0066 −0.0068 0.0006 0.0057 0.0041 0.0221 0.0132 0.0048
W −0.0031 0.0003 −0.0074 −0.0062 0.0006 0.0058 0.0041 0.0228 0.0135 0.0048

0.5 N −0.8542 0.6999 −1.7114 1.3949 −0.0512 0.7440 0.4911 2.9878 1.9514 0.0072
NW −0.0046 0.0013 −0.0096 −0.0061 0.0036 0.0076 0.0062 0.0312 0.0265 0.0064
W −0.0057 0.0018 −0.0110 −0.0056 0.0035 0.0078 0.0062 0.0316 0.0266 0.0064

500 0.3 N −0.4797 0.6032 −0.4373 0.7671 −0.0333 0.2352 0.3649 0.2066 0.5974 0.0029
NW 0.0004 −0.0002 −0.0053 0.0018 −0.0013 0.0023 0.0015 0.0084 0.0053 0.0020
W 0.0003 −0.0001 −0.0060 0.0024 −0.0013 0.0023 0.0015 0.0086 0.0056 0.0020

0.5 N −0.8502 0.7021 −1.7059 1.4027 −0.0551 0.7286 0.4935 2.9343 1.9696 0.0049
NW −0.0004 0.0004 −0.0046 0.0001 −0.0014 0.0030 0.0024 0.0123 0.0093 0.0026
W −0.0007 0.0006 −0.0050 0.0003 −0.0014 0.0030 0.0024 0.0125 0.0093 0.0026
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TABLE A3 Empirical biases and mean squared errors (MSEs)
of estimators of nuisance parameters 𝛾x1

and 𝜆x1
for two

proportions (0.3, 0.5) of left-censored (limit of detection (LOD))
covariate x1. Response yi ∼ ind. Bernoulli(𝜇i) with the logit link
log(𝜇i∕(1 − 𝜇i)) = 𝛽0 + 𝛽1x1i and covariate
xi1 ∼ ind. Gamma(𝛾x1

, 𝜆x1
). Parameters are fixed at 𝛽0 = −1,

𝛽1 = 1, 𝛾x1
= 4, and 𝜆x1

= 2. (N = Naive method; NW =
Nonweighted method; W = Weighted method)

Bias MSE
n LOD Method 𝜸̂x1

𝝀̂x1
𝜸̂x1

𝝀̂x1

100 0.3 N −0.9195 −0.3853 0.9429 0.1796
NW 0.1620 0.0830 0.6034 0.1541
W 0.1516 0.0791 0.6007 0.1527

0.5 N −0.7879 −0.2588 0.6895 0.1065
NW 0.1507 0.0723 0.9154 0.2169
W 0.1431 0.0696 0.9114 0.2160

200 0.3 N −0.9551 −0.4011 0.9605 0.1771
NW 0.0769 0.0444 0.2878 0.0753
W 0.0734 0.0431 0.2913 0.0758

0.5 N −0.8024 −0.2643 0.6781 0.0893
NW 0.0775 0.0415 0.4442 0.1030
W 0.0744 0.0404 0.4432 0.1027

500 0.3 N −0.9688 −0.4142 0.9577 0.1774
NW 0.0416 0.0200 0.1124 0.0277
W 0.0396 0.0193 0.1139 0.0278

0.5 N −0.8171 −0.2777 0.6811 0.0842
NW 0.0329 0.0159 0.1748 0.0390
W 0.0320 0.0155 0.1755 0.0390

TABLE A4 Empirical biases and mean squared errors (MSEs)
of estimators nuisance parameters 𝜇x1

and 𝜎x1
for two proportions

(0.3, 0.5) of left-censored (limit of detection (LOD)) covariate x1.
Response yi ∼ ind. Normal(𝜇i, 𝜎

2) with 𝜇i = 𝛽0 + 𝛽1x1i and
covariate xi1 ∼ ind. Normal(𝜇x1

, 𝜎2
x1
). Parameters are fixed at

𝛽0 = 1, 𝛽1 = 2, 𝜎 = 1, 𝜇x1
= 2, and 𝜎x1

= 1. (N = Naive method;
NW = Nonweighted method; W = Weighted method)

Bias MSE
n LOD Method 𝝁̂x1

𝝈̂x1
𝝁̂x1

𝝈̂x1

40 0.3 N −0.0337 −0.0206 0.0258 0.0091
NW −0.0016 −0.0210 0.0271 0.0183
W −0.0053 −0.0197 0.0279 0.0186

0.5 N −0.0979 −0.0239 0.0353 0.0083
NW 0.0005 −0.0221 0.0335 0.0227
W −0.0013 −0.0221 0.0343 0.0227

60 0.3 N −0.0370 −0.0176 0.0187 0.0059
NW −0.0031 −0.0190 0.0188 0.0122
W −0.0053 −0.0181 0.0192 0.0122

0.5 N −0.0981 −0.0134 0.0255 0.0053
NW −0.0032 −0.0056 0.0231 0.0174
W −0.0052 −0.0053 0.0238 0.0174

100 0.3 N −0.0333 −0.0092 0.0114 0.0035
NW 0.0015 −0.0111 0.0112 0.0072
W −0.0014 −0.0100 0.0118 0.0073

0.5 N −0.1026 −0.0128 0.0204 0.0032
NW −0.0039 −0.0073 0.0141 0.0094
W −0.0042 −0.0074 0.0144 0.0094
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TABLE A5 Estimates of nuisance parameters (standard errors in parentheses) for left-censored covariates
in logistic regression fits to MIREC data. (N = Naive method; NW = Nonweighted method; W = Weighted
method)

y x1 x2 Method 𝝁̂x1
𝝈̂x1

𝝁̂x2
𝝈̂x2

BO COTISE PFHxS N −3.316(0.063) 2.571(0.045) 0.042(0.019) 0.770(0.013)
NW −3.578(0.082) 2.637(0.059) 0.039(0.019) 0.776(0.014)
W −2.372(0.066) 3.056(0.071) 0.051(0.017) 0.766(0.012)

OGTT_1 DMAA DMP N −3.450(0.028) 0.911(0.020) 1.102(0.030) 0.976(0.021)
NW −3.534(0.032) 1.045(0.025) 0.955(0.038) 1.191(0.031)
W −3.532(0.027) 1.044(0.023) 0.951(0.031) 1.194(0.028)

OGTT_2 MEOHP MEHHP N 1.813(0.035) 1.160(0.025) 2.176(0.037) 1.224(0.026)
NW 1.804(0.035) 1.174(0.023) 2.170(0.037) 1.235(0.026)
W 1.804(0.035) 1.174(0.022) 2.172(0.037) 1.232(0.025)

LBW OXYCHLOR COTISE N −4.375(0.013) 0.533(0.009) −3.325(0.063) 2.562(0.045)
NW −4.395(0.014) 0.573(0.011) −3.584(0.082) 2.623(0.058)
W −4.411(0.013) 0.586(0.010) −2.377(0.066) 3.049(0.071)

LGA MBzP DMAA N 1.657(0.033) 1.301(0.024) −3.456(0.023) 0.895(0.016)
NW 1.650(0.034) 1.313(0.024) −3.539(0.027) 1.028(0.021)
W 1.652(0.033) 1.311(0.022) −3.542(0.023) 1.030(0.019)

SGA PFOA ASAL N 0.500(0.016) 0.592(0.011) −4.047(0.042) 1.594(0.030)
NW 0.501(0.016) 0.589(0.011) −4.664(0.078) 2.340(0.071)
W 0.499(0.016) 0.594(0.011) −4.676(0.056) 1.030(0.019)

PreB TRANSNONA BPC170 N −3.971(0.013) 0.527(0.009) −4.237(0.014) 0.557(0.010)
NW −4.023(0.015) 0.607(0.012) −4.557(0.026) 0.890(0.023)
W −4.015(0.013) 0.602(0.011) −4.537(0.019) 0.882(0.022)

Abbreviations: ASAL, arsenobetaine; BO, birth outcome; DMAA, dimethylarsinic acid; DMP, dimethylphosphate;
COTISE, cotinine; LBW, low birth weight; LGA, large for gestational age; MBzP, mono benzyl phthalate; MEHHP,
mono-(2-ethyl-5-hydroxyhexyl) phthalate; MEOHP, mono-(2-ethyl-5-oxohexyl) phthalate; PFOA, perfluorooctanoic acid;
PreB, preterm birth; OXYCHLOR, oxychlordane; SGA, small for gestational age; TRANSNONA, trans-nonachlor.
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