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Depending on the chemical and the outcome, prenatal exposures to environmental chemicals can lead to adverse
effects on the pregnancy and child development, especially if exposure occurs during early gestation. Instead of
focusing on prenatal exposure to individual chemicals, more studies have taken into account that humans are ex-
posed to multiple environmental chemicals on a daily basis. The objectives of this analysis were to identify the
pattern of chemical mixtures to which women are exposed and to characterize women with elevated exposures
to various mixtures. Statistical techniques were applied to 28 chemicals measured simultaneously in the first tri-

Keywords: N . o :
Chemicals mester and socio-demographic factors of 1744 participants from the Maternal-Infant Research on Environment
Pregnancy Chemicals (MIREC) Study. Cluster analysis was implemented to categorize participants based on their socio-de-
Mixtures mographic characteristics, while principal component analysis (PCA) was used to extract the chemicals with sim-

ilar patterns and to reduce the dimension of the dataset. Next, hypothesis testing determined if the mean
converted concentrations of chemical substances differed significantly among women with different socio-de-
mographic backgrounds as well as among clusters. Cluster analysis identified six main socio-demographic clus-
ters. Eleven components, which explained approximately 70% of the variance in the data, were retained in the
PCA. Persistent organic pollutants (PCB118, PCB138, PCB153, PCB180, OXYCHLOR and TRANSNONA) and
phthalates (MEOHP, MEHHP and MEHP) dominated the first and second components, respectively, and the
first two components explained 25.8% of the source variation. Prenatal exposure to persistent organic pollutants
(first component) were positively associated with women who have lower education or higher income, were
born in Canada, have BMI >25, or were expecting their first child in our study population. MEOHP, MEHHP and
MEHP, dominating the second component, were detected in at least 98% of 1744 participants in our cohort
study; however, no particular group of pregnant women was identified to be highly exposed to phthalates.
While widely recognized as important to studying potential health effects, identifying the mixture of chemicals
to which various segments of the population are exposed has been problematic. We present an approach using
factor analysis through principal component method and cluster analysis as an attempt to determine the preg-
nancy exposome. Future studies should focus on how to include these matrices in examining the health effects
of prenatal exposure to chemical mixtures in pregnant women and their children.
Crown Copyright © 2016 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Exposures to environmental chemicals during early life, either in
utero or during early stages of childhood development, can impact
fetal development and child health and may even lead to or exacerbate
chronic conditions (Gluckman and Hanson, 2004). The rising rates of
health problems such as infertility, autism, attention deficit and hyper-
activity disorders, childhood brain cancer and acute lymphocytic leuke-
mia, all thought to be associated with multiple causal factors, have
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further increased the interest in studying chemical mixtures
(Bellinger, 2012). Studies have reported associations between several
individual chemicals (e.g., pesticides, bisphenol A (BPA), phthalates,
polybrominated diphenyl ethers (PBDEs) and heavy metals) and child
neurodevelopment outcomes (Bellinger, 2012). Furthermore, other re-
search suggests that many chemicals have similar mechanisms of action
(e.g., endocrine disrupting effects) (Crofton et al., 2005; Kjeldsen et al.,
2013) and exposure to multiple chemicals might have more than addi-
tive effects (National Research Council, 2008; Woodruff et al., 2011).
This concept of the “exposome”, defined as the totality of human envi-
ronmental exposures from conception onward, complementing the ge-
nome, has attracted growing interest in recent years (Robinson et al.,
2015). Varshavsky et al. (2016) used National Health and Nutrition
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Examination Survey data (NHANES, 2001-2012) and developed a po-
tency-weighted sum of daily intake to examine demographic differ-
ences in cumulative phthalates exposure among U.S. women of
reproductive age. Braun et al. (2016) point out that the health effects
of cumulative exposure to multiple agents is one of the major questions
in ongoing epidemiological studies.

Although the importance of chemical mixtures has been recognized
for some time, rigorous study of their levels and impact has been slow
due to a lack of knowledge, analytical capacity and funding (Lokke et
al., 2013). This difficulty in understanding and predicting the effects of
multiple exposures has been described as one of the greatest limitations
in risk assessment (NAS, 2012). Little is known about the extent or im-
pact of such multiple exposures in pregnant women. One possible ex-
planation for this lack of knowledge is that, due to the large number of
variables with potential impacts, the results of traditional statistical
analyses, such as multiple linear models considering interaction be-
tween covariates, are sometimes difficult to interpret. However, statisti-
cal approaches exist which examine mixtures of chemicals accounting
for much of the observed differences in exposure data. For example,
where data sets have high dimensions (i.e. many variables) or high col-
linearity (i.e. highly correlated explanatory variables), a technique
known as principal component analysis (PCA) is often used to reduce
the dimension of the data and convert the raw data into linearly inde-
pendent factor scores (Johnson and Wichern, 2007). PCA has been ap-
plied in risk assessment (Agay-Shay et al. 2015; Robinson et al. 2015;
Veyhe et al. 2015). Another technique, called cluster analysis, can be
used to assess similarities among subjects, such as similarities based
on socio-demographic information. Such clusters could then be treated
as independent variables for further association analysis between
chemical mixtures and markers of disease risk or health outcomes. For
example, nutritionists have incorporated cluster analysis to evaluate di-
etary patterns which reflect combinations of foods (i.e. mixtures) to
identify individuals who may be at risk for certain health outcomes
(Bailey et al., 2006; Funtikova et al., 2015; Clarke et al., 2015). Cluster
analysis is also common in environmental science studies (Lampa et
al., 2012; Lalloué et al., 2015; Nordio et al., 2015; OBrien et al., 2014;
Peng et al,, 2016; Zhao et al., 2016). Lampa et al. (2012) applied cluster
analysis to the NHANES 2003-2004 and the Vasculature in Uppsala Se-
niors (PIVUS) studies, respectively, to assess possible clustering of envi-
ronmental chemical contaminants (37 chemicals from PIVUS and 18
from NHANES) and the results showed some stable clusters. Lalloué et
al. (2015) collected 31 environmental indicators from the Great Lyon
area in France at the census Block Group (BG) scale. Cluster analysis
was used to assess the environmental burden experienced by popula-
tions and five BG classes were categorized. Nordio et al. (2015) used
cluster analysis to group the 211 cities in the US that share common
weather characteristics. In order to evaluate air pollution situations in
major cities in China, Zhao et al. (2016) measured pollutants PM, s,
PM;0, SO», Noy, CO and O3 between 2014 and 2015 from 31 provincial
capital cities. Cluster analysis was used to understand the pollution
levels among cities. For each pollutant (PM; 5, PM;, SO5, No,, CO and
03) data were collected from multiple time points and sites in each of
the 31 cities. Subsequently, the cities were then grouped according to
similar air pollution levels.

Traditional statistical methods have been utilized in environmental
health in recent years but these advanced methods can only be used
when their statistical assumptions are satisfied. Data-driven approaches
would be proposed when the assumptions are violated. Cluster analysis
using a Bayesian nonparametric approach and PCA were applied to esti-
mates of dietary pesticide levels to identify the main mixture of pesti-
cides to which the general population is exposed in France (Crépet et
al., 2013). The same dataset was also analyzed by the method of Non-
negative Matrix Factorization, which basically decomposed the matrix
of individuals' consumption quantities; and PCA was used to examine
the main mixture to which the French population was exposed and
the connection between exposure and diet (Béchaux et al., 2013).

Herring (2010) examined the association between endometriosis and
exposure to environmental polychlorinated biphenyl (PCB) congeners
by multiple logistic regression considering Bayes shrinkage priors. Sun
et al. (2013) summarize five statistical methods (classification and re-
gression tree, supervised principal component analysis, least absolute
shrinkage and selection operator, partial least-squares regression,
Bayesian model averaging) for constructing multipollutant models
and conduct a simulation study to assess the performance of these five
models. Bobb et al. (2014) introduced Bayesian kernel machine regres-
sion to study mixture in which the health outcome is regressed on a
high-dimensional exposure-response function of the chemical mixtures
that is specified using a kernel representation. However, as these ap-
proaches are data-driven, the chemical mixtures developed using
these methods may not always lead to results which are easy to
interpret.

The Maternal-Infant Research on Environment Chemicals (MIREC)
Study was developed to investigate the impacts of environmental
chemicals on the health of pregnant women and their offspring and to
identify vulnerable (exposed) subgroups within the population
(Arbuckle et al., 2013). The one-chemical-at-a-time approach provides
insufficient knowledge about the human health effects of exposure to
chemical mixtures (Braun et al., 2016). In this study, we developed sta-
tistical criteria to examine the association between exposure to chemi-
cal mixtures and maternal socio-demographic characteristics. Our
objectives were to (Agay-Shay et al., 2015) apply cluster analysis to
identify sub-groups of pregnant women by their socio-demographic
characteristics; (Ashley-Martin et al., 2015) apply PCA to first-trimester
environmental chemical concentrations in blood and urine of pregnant
women to search for patterns among the contaminants that are poten-
tially highly correlated; and (Arbuckle et al., 2014) utilize these compo-
nents together with cluster analysis results and hypothesis testing to
identify the socio-demographic characteristics of pregnant women
with high exposures to multiple chemicals. While many statistical ap-
proaches are available, we focused on commonly used techniques in
an effort to produce interpretable results.

2. Methods
2.1. Study population and data collection

The MIREC pregnancy cohort study has been described previously
(Arbuckle et al., 2013). Briefly, approximately 2000 pregnant women
were recruited in early pregnancy (<14 weeks) from prenatal clinics
in ten cities across Canada between 2008 and 2011 and followed over
the course of pregnancy and infant birth. Participants completed a de-
tailed questionnaire covering socio-demographic details from which in-
formation on age, education, household income, parity, pre-pregnancy
body mass index (BMI), country of birth and smoking status was ex-
tracted. The protocol for the MIREC Study was reviewed by multiple re-
search ethics committees and all study participants signed informed
consent forms.

Blood and urine samples were collected during the 1st trimester of
pregnancy for chemical analyses. Chemicals considered in these analy-
ses included metals (arsenic (As), lead (Pb), mercury (Hg), cadmium
(Cd), manganese (Mn)), polychlorinated biphenyls (PCBs), organochlo-
rine pesticides (OCs), and perfluoroalkyl substances (PFASs) measured
in blood, as well as bisphenol A (BPA), organophosphate pesticides
(OPs) and phthalate metabolites measured in urine.

2.2. Statistical analysis

To account for all seven socio-demographic variables (age, educa-
tion, household income, parity, pre-pregnancy body mass index (BMI),
country of birth and smoking status) simultaneously, we first per-
formed a cluster analysis to categorize the pregnant women. As demo-
graphic variables were either discrete or continuous, the Gower
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distance was chosen to measure the similarities between subjects. The
diana algorithm in software R (a divisive hierarchical clustering of the
dataset) was used to perform the cluster analysis.

In order to maintain statistical reliability, chemicals with less than
approximately 30% of samples below the limit of detection (LOD)
were omitted from further analysis. For the remaining chemicals, values
below the LOD were substituted by one half the limit of detection. Stan-
dardization was applied to convert the raw data into values without the
unit of measurement, a step recommended for using PCA when the var-
iance of the variables are heterogeneous (Johnson and Wichern, 2007).
Through PCA, we converted our raw data into independent factor scores
based on factor loadings to examine the association between the factor
scores and characteristics of the pregnant women. To illustrate the PC
(principal component) scores, suppose the vector (x1,xz, -**,X2g) records
the chemical concentrations of Mn, Pb, ---, beta-Hexachlorocyclohexane
(B-HCH) for a single participant. The following equation

0.019x; + 0.1611x5 + --- + 0.1054x2g

was then used to convert the chemical concentrations into a PC1 score
for each subject. Each score is derived from this linear combination of
the measured chemical concentrations. As demonstrated in the
Results section, since the values corresponding to PCB118, PCB138,
PCB153, PCB180, oxychlordane (OXYCHLOR) and trans-nonachlor
(TRANSNONA) (Table 5) are positive and higher than those seen for
the other 22 chemicals, higher concentrations of these chemical sub-
stances would lead to higher PC1 scores. Similarly for the second com-
ponent (PC2), the linear equation

—0.0317%1 + (—0.02)X3 + -+ + (—0.0002)X28

was used to determine a PC2 score for each subject. Since the eigen-
values of PC2 corresponding to mono-(2-ethyl-5-oxohexyl) phthalate
(MEOHP), mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), and
mono-2-ethylhexyl phthalate (MEHP) are negative and smaller than
those of other chemicals, higher concentrations of these chemical sub-
stances would lead to smaller PC2 scores. Components were retained
for further analysis if a component had an eigenvalue of at least one or
at least 70% of the source variation was explained by the retained
components.

Then we examined the association between the factor scores (the re-
sponse variables) and the pregnant women in terms of the socio-demo-
graphic characteristics and the clusters (the covariates). Continuous
covariates were analyzed using linear regression, while ANOVA was ap-
plied to test for the association for discrete covariates. The aim of
ANOVA was to determine whether there were significant differences
among mean factor scores in terms of the characteristics of the partici-
pants and the clusters. If the ANOVA test was statistically significant,
Tukey's honestly significant difference (HSD) test for multiple compar-
isons was then applied to test whether the pairwise differences of the
mean scores were significantly different from zero. Regarding a contin-
uous covariate, we fitted a linear regression model of the factor scores
on maternal age and tested if the slope was significantly different
from zero. The statistical analysis was performed using the R package
version 3.1.1, and a significance level of 5% was assumed throughout.

3. Results

Concentrations of 28 chemicals out of 81 available chemicals were
measured in the blood and urine samples from 1744 women. Table 1
summarizes descriptive statistics for the chemicals or their metabolites
under study. These chemicals were found at detectable levels in approx-
imately 70% of subjects, with lead (Pb) and manganese (Mn) detected in
100% of the women. Descriptive statistics for the 53 chemicals with
higher percentages of non-detects are provided in the Supplemental
material Table S1. Table 2 presents frequency distributions of the

demographic variables for the 1744 MIREC participants. Maternal age
ranged from 18 to 48 years, with a median age of 32 years. Most
women were in their first or second pregnancy, had completed post-
secondary education, had high income and were born in Canada. Almost
6% of the participants were current smokers, while another 6% had quit
smoking during pregnancy. Fig. 1 presents a heat map of the Pearson
correlation matrix of the 28 chemicals. Note that the chemical names
in the x- and y-axes are colored according to their class and the
chemicals inside each rectangle are the ones that dominated the com-
ponent (Table 5).

3.1. Extreme values

When evaluating the chemical mixtures, some women were found
to have extremely high levels of one or more chemicals. We identified
a data point as an extreme value (“high level”) if it was 100 times its in-
terquartile range above the third quartile (if the threshold determined
from this equation is <10, then 10 is used to identify an extreme
value). Among the 1320 participants who were born in Canada, 3.17%
had extreme values, while among the 324 participants who were born
outside Canada, 6.79% had extreme values. Among 1479 pregnant
women who were in their first or second pregnancy, 61 (4.12%) had ex-
treme values; while among the 265 pregnant women who already had
more than one child, only six (2.26%) had extreme values. Among the
105 pregnant women who quit smoking during pregnancy, eight
(7.62%) had extreme values, while among those pregnant women
who were non-smokers (n = 1063) and former smokers (n = 472),
40 and 8 (3.76% and 3.81%) had extreme values. Among 1744 subjects
55 women had one extreme high chemical level, 5 had two extreme
high chemical levels and 5 had three extreme high chemicals levels.
As a percentage, 3.73% (=65/1744) of pregnant women had at least
one extremely high chemical level while, among women with extreme
values, 15.38% (=10/65) had more than one extreme chemical level.

3.2. Cluster analysis

The cluster analysis as shown in Tables 3 and 4 resulted in six clus-
ters of the 1744 participants. Cluster 1 included women born in Canada
with a high income and high education level; Cluster 2 included women
born outside of Canada and with a pre-pregnancy BMI lower than 25;
Cluster 3 included women born in Canada with a middle income level;
Cluster 4 included women who were born outside of Canada and with
a pre-pregnancy BMI at least 25; Cluster 5 included women born in Can-
ada with a low income level; and, Cluster 6 included women born in
Canada with a high income level and low education level.

3.3. PCA analysis

We retained eleven components (PC1-11), which explained ap-
proximately 70% of the source variation. Table 5 shows the eigenvectors
of the corresponding 11 components after rotation. The first component
(PC1) accounted for 15.03% of the source variance and is dominated by
PCBs and other persistent organic pollutants (POPs).

3.4. ANOVA and regression

Table 6 provides results from the ANOVA and linear regression anal-
ysis and the corresponding p-values for hypothesis testing. For example,
the PC1 scores appear to be heavily influenced by the level of education
(p-value < 0.001), which indicates that at least one pair of PC1 mean
scores among the education levels are significantly different. With the
exception of PC2, most demographic factors are significant in terms of
their mean PC scores (Table 6). We, therefore, performed Tukey's HSD
post-hoc tests to determine the differences among groups. The slope of
the regression model of PC1 on maternal age is significant, which
means maternal age is a good predictor for PC1 score.
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Descriptive statistics and percentage of non-detectable values for chemical concentrations in the first trimester samples from the MIREC Study (n = 1744) for chemicals with approxi-

mately 70% detectable observations.

Abbreviation Description Matrix Units % MIN Q1 Median Q3 Max Mean STD GE
<LOD
Metals
Mn Manganese Blood nmol/L 0.00% 37.00 130.00 160.00 200.00 530.00 168.34 54.82 160.13
Pb Lead Blood upmol/L 0.00% 0.01 0.02 0.03 0.04 0.25 0.03 0.02 0.03
cd Cadmium Blood nmol/L 2.63% 020 1.20 1.80 2.80 50.00 2.94 4.11 1.93
As Arsenic Blood nmol/L 7.48% 150 6.97 11.00 16.00 460.00 1349 17.88 9.86
Hg Mercury Blood nmol/L 949% 025 1.60 3.50 6.80 50.00 5.04 5.19 3.04
DMAA Dimethylarsinic acid Urine umol/L 14.12% 0.01 0.02 0.03 0.06 0.86 0.05 0.07 0.03
Plasticisers
BPA Bisphenol A Urine  pg/L 12.29% 0.10 0.34 0.77 1.60 140.00 2.03 7.47 0.76
MEP Mono ethyl phthalate Urine  pg/L 011% 025 11.00 2800 86.00 13,000.00 137.25 511.70 31.85
MCPP Mono-3-carboxypropyl phthalate Urine  pg/L 15.22% 0.10 031 0.93 2.10 100.00 2.61 6.83 0.87
MnBP Mono-n-butyl phthalate Urine  pg/L 022% 010 520 1200 25.00 310000 28.07 11333 11.62
MEOHP Mono-(2-ethyl-5-oxohexyl) phthalate  Urine  pg/L 0.28% 0.10 3.00 6.50 13.00 980.00 1516 4796 6.40
MBzP Mono benzyl phthalate Urine  pg/L 0.50% 0.10 2.30 5.20 12.00 420.00 12.19 2539 5.22
MEHHP Mono-(2-ethyl-5-hydroxyhexyl) Urine  ng/L 0.62% 020 4.10 9.40 20.00 1200.00 23.52 7410 9.18
phthalate
MEHP Mono-2-ethylhexyl phthalate Urine  pg/L 1.52% 0.10 1.10 2.20 4,50 340.00 5.74 19.80 2.29
Perfluoroalkyl substances
(PFASs)
PFOA Perfluorooctanoic acid Plasma pg/L 0.15% 0.05 1.10 1.70 2.40 16.00 1.95 1.24 1.65
PFOS Perfluorooctane sulfonate Plasma pg/L 0.15% 015 3.30 4.60 6.70 36.00 5.29 3.07 4.54
PFHxS Perfluorohexane sulfonate Plasma pg/L 4.12% 0.10 0.66 1.00 1.60 40.00 1.46 1.88 1.02
PCBs
PCB118 2,3',4,4',5-Pentachlorobiphenyl Plasma pg/L 26.61% 0.01 0.01 0.01 0.02 0.22 0.02 0.02 0.01
PCB138 2,2'3,4,4' 5'-Hexachlorobiphenyl Plasma pg/L 7.03% 0.01 0.02 0.03 0.04 043 0.03 0.03 0.03
PCB153 2,2',4,4',5,5'-Hexachlorobiphenyl Plasma pg/L 1.29% 0.01 0.03 0.04 0.07 0.93 0.06 0.07 0.04
PCB180 2,2',3,4,4',5,5'-Heptachlorobiphenyl Plasma pg/L 7.39% 0.01 0.02 0.03 0.05 1.10 0.04 0.06 0.03
Organophosphate pesticides 0.00 0.00
(OPs)
DMTP Dimethylthiophosphate Urine  pg/L 19.92% 030 0.84 2.90 8.20 210.00 8.30 1637 273
DMP Dimethylphosphate Urine  pg/L 20.83% 0.50 1.20 2.70 6.00 190.00 5.26 8.72 2.62
DEP Diethylphosphate Urine  pg/L 22.83% 050 1.00 2.10 4.20 3400.00 5.75 81.61 2.06
Organochlorine pesticides (OCs) 0.00 0.00
DDE p.p’-Dichlorodiphenyldichloroethylene Plasma pg/L 1.03% 0.05 0.20 0.30 0.48 26.00 0.58 134 0.34
OXYCHLOR Oxychlordane Plasma pg/L 7.81% 0.00 0.01 0.01 0.02 0.10 0.01 0.01 0.01
TRANSNONA Trans-nonachlor Plasma pg/L 15.87% 0.01 0.01 0.02 0.03 0.23 0.02 0.02 0.02
B-HCH beta-Hexachlorocyclohexane Plasma pg/L 31.88% 0.01 0.01 0.01 0.02 8.20 0.05 0.28 0.01

Note that the substitution was applied on <LOD observations.

Table 2
Characteristics of MIREC participants who provided both a first trimester urine and blood
sample (n = 1744).

Education N Percentage
High school or less 151 8.67%
College diploma 500 28.70%
Undergraduate university degree 636 36.51%
Graduate university degree 455 26.12%

Income ($)
<50,000 297 17.86%
50,001-100,000 686 41.25%
>100.000 680 40.89%

Country of birth
Canada 1420 81.42%
Other 324 18.58%

Pre-pregnancy BMI
<18.5 (underweight) 57 3.32%
18.5-24 (normal) 1047 60.98%
25-29 (overweight) 373 21.72%
>30 (obese) 240 13.98%

Parity
0 775 44.44%
1 704 40.37%
2 200 11.47%
3+ 65 3.73%

Smoking status
Never 1063 61.02%
Former 472 27.10%
Quit during the pregnancy 105 6.03%
Current 102 5.86%

3.5. PC scores

Table 7 provides results of the Tukey post-hoc tests for the high-or-
ganochlorines component (PC1). As the low-phthalate (PC2) compo-
nent did not indicate any significant differences at a 5% level of
significance, no further analysis was conducted. Hypothesis test results
for PC3 through PC11 are provided in Supplemental material, Tables S2—
S10. Table 7 shows that the mean PC1 scores for some educational
groups were significantly different from each other, with “undergradu-
ate degree vs. college diploma” having the smallest mean difference,
and “graduate degree vs. high school or less” having the largest mean
difference. Pregnant women in the highest income group tended to
have a significantly higher mean score than those in the middle and
low income groups; however, no significant difference was noted be-
tween pregnant women in the low and middle income groups. The
PC1 scores are also influenced by the birthplace of pregnant women,
with higher scores for those born in Canada. The only two significant
differences with respect to pre-pregnancy BMI were found between
the overweight (25 < BMI < 30) and normal groups (18.5 < BMI < 25)
and obese (BMI > 30) and normal groups. In addition, women who are
pregnant for the first time (parity = 0) had a significantly higher
mean score compared with those having one or more previous preg-
nancies. With respect to smoking status, significant differences were
noted between current and never smokers, as well as between current
and former smokers. Comparing the mean PC1 scores among the six
clusters, the mean PC1 score of cluster 6 (born in Canada, high income,
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Fig. 1. Heat map of the Pearson correlation matrix of 28 chemicals.

Table 3
Relative frequency distributions (proportions) of demographic characteristic by cluster.
Cluster
Education 1 2 3 4 5 6
High school or less 0.01 0.04 007 020 028 049
College diploma 0.15 019 038 030 046 0.51
Undergraduate university degree 046 038 036 024 021 0.00
Graduate university degree 038 039 019 025 0.05 0.00
Income ($)
<50,000 0.00 0.16 000 045 100 0.00
50,001-100,000 0.00 038 097 036 000 0.11
>100.000 1.00 046 0.03 019 0.00 0389
Birth place
Canada 1.00 000 1.00 000 1.00 1.00
Non-Canada 000 1.00 000 1.00 0.00 0.00
Pre-pregnancy BMI
<185 0.02 0.03 003 0.7 004 0.06
18.5-24 067 092 055 0.05 053 031
25-29 021 000 023 074 021 034
230 009 005 018 0.13 023 029
Parity
0 045 045 041 037 051 0.60
1 041 044 044 040 029 023
2 011 0.09 011 0.16 014 0.11
3+ 0.03 002 004 0.07 006 0.06
Smoking status
Never 069 071 058 075 041 017
Former 027 024 031 017 025 031
Quit during the pregnancy 003 0.03 008 0.04 010 0.17
Current 0.01 002 003 005 024 034

Number of participants 568 241 591 83 226 35

low education) was the highest, and was statistically higher than the
mean scores of clusters 1 (born in Canada, high income, high educa-
tion), 4 (born outside Canada, pre-pregnancy BMI at least 25) and 5
(born in Canada, low income). On the other hand, the mean PC1 score
of cluster 4 was the lowest, and was statistically lower than the mean
scores of clusters 1, 2 (born outside Canada, pre-pregnancy BMI <25),
3 (born in Canada, middle income) and 6.

Other findings are briefly summarized as follows: PC8 is dominated
by all OCs, PFOA and two metals (Pb and Cd) and associated with the
variables of education level, household income, country of birth, parity,
maternal age, and the cluster. PC9 is only dominated by the metal Cd
and associated with the education level, household income, country of
birth, pre-pregnancy BMI, smoking status and cluster. PC11 is dominat-
ed by organophosphate pesticide DMP and plasticiser mono ethyl
phthalate (MEP) and only associated by the characteristics of the preg-
nant women in terms of smoking status. The slope of the regression
model of PC4, PC5, PC6 and PC8, individually, on maternal age is

Table 4
Five-number summary of maternal age for each cluster.
Cluster Min Q1 Median Q3 Max
1 22 31 34 36 48
2 18 31 34 37 44
3 19 29 31 35 46
4 18 29 34 38 46
5 17 24 28 32 43
6 18 23.5 26 29 41
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Table 5

The rotated eigenvectors of the eleven components after principal component analysis for 28 chemical substances in the first trimester from the MIREC Study.

Contaminant PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11
Mn 0.019 -0.0317 0.1655 -0.0981 0.2834 -0.0099 0.038 0.0261 0.1776 0.0275 -0.1683
Pb 0.1611 -0.02 0.1287 0.0162 0.1078 0.074 0.2013 0.3151 0.2795 0.1783 -0.1619
cd -0.0206 0.0051 0.042 0.0067 0.1151 -0.0436 0.185 0.4091 0.616 0.1826 0.1298
As 0.0811 -0.0389 0.12 0.0986 0.2037 -0.2015 0.4966 0.136 -0.1834 0.0342 0.0616
Hg 0.1862 -0.0141 0.0525 0.0873 0.2405 -0.2064 0.3168 0.0248 -0.3097 -0.0377 0.0192
DMAA 0.0474 -0.1609 0.2994 0.2132 0.1513 -0.106 0.199 0.0224 -0.2072 -0.2339 0.0972
BPA -0.0184 -0.0789 0.1047 0.0876 -0.0296 -0.3113 -0.2279 0.0906 -0.0986 0.3178 -0.134
MEP -0.0065 -0.0397 0.1272 0.1261 -0.0124 0.1602 -0.0846 0.1411 0.1232 -0.6309 0.3909
MCPP -0.0083 -0.1669 0.1994 0.1337 -0.0558 -0.3934 -0.1993 0.011 0.0634 -0.0107 0.0347
MnBP -0.0205 -0.1429 0.1914 0.0955 -0.0576 -0.4612 -0.2855 -0.0258 0.0445 0.1124 -0.0448
MEOHP -0.017 -0.5421 -0.1422 -0.1169 -0.0184 0.064 0.0443 0.0217 -0.0149 0.0054 -0.0074
MBzP -0.0533 -0.1143 0.1505 0.1384 -0.1222 -0.2003 -0.1919 0.0506 0.2343 -0.2295 0.2097
MEHHP -0.0168 -0.5492 -0.1427 -0.1187 -0.0146 0.0503 0.0403 0.025 -0.0105 0.0057 0.0043
MEHP -0.0141 -0.5151 -0.1736 -0.1348 -0.0073 0.0771 0.0416 0.0291 -0.0157 0.0063 0.0068
PFOA 0.0742 0.019 -0.3356 0.3924 -0.0532 0.0469 -0.0094 0.225 -0.0081 0.0328 0.0223
PFOS 0.0994 -0.0161 -0.3186 0.4627 -0.0208 -0.0475 -0.0427 0.135 -0.1801 -0.0241 -0.0012
PFHxXS 0.0061 -0.002 -0.285 0.386 -0.077 0.0708 -0.0778 0.1796 0.0652 0.0794 -0.0732
PCB118 0.3833 -0.0026 -0.0329 0.0215 -0.0368 -0.0525 -0.0008 -0.0627 -0.0018 -0.0094 0.0164
PCB138 0.4431 0.0027 0.0483 -0.0984 -0.2462 -0.0108 -0.0016 0.0543 -0.0129 -0.0238 0.0023
PCB153 0.4361 0.0072 0.0682 -0.1246 -0.2879 0.0022 0.0027 0.0929 -0.022 -0.0183 -0.002
PCB180 0.3792 0.0117 0.0812 -0.1521 -0.3398 0.0238 -0.0065 0.1338 -0.0313 -0.0098 -0.0052
DMTP -0.0148 -0.1255 0.3648 0.3156 -0.1384 0.3453 0.0608 -0.173 0.0431 0.0611 -0.2027
DMP -0.0255 -0.1366 0.3751 0.3317 -0.1503 0.3328 0.026 -0.1272 0.003 0.1561 -0.1723
DEP -0.0093 -0.0149 0.0876 0.0316 -0.0606 0.1264 0.0331 -0.1216 -0.0905 0.5171 0.7856
DDE 0.1546 -0.0393 0.1405 -0.0424 0.3595 0.2391 -0.3695 0.2522 -0.146 0.0241 0.0086
OXYCHLOR 0.3301 -0.0374 -0.1335 0.0992 0.2547 0.0147 -0.1001 -0.3819 0.2693 0.0211 0.0253
TRANSNONA 0.2964 -0.0511 -0.1053 0.1281 0.3489 -0.0332 -0.06 -0.43 0.218 -0.0046 0.0372
B-HCH 0.1054 -0.0002 0.102 -0.0838 0.3446 0.1952 -0.3888 0.2998 -0.2494 0.0813 0.0276
Eigenvalues 4.2091 3.0173 1.8364 1.7409 1.4825 1.3121 1.2271 1.202 1.0662 1.0158 0.9748
Variance
explained (in %) 0.1503 0.1078 0.0656 0.0622 0.0529 0.0469 0.0438 0.0429 0.0381 0.0363 0.0348
Cumulative
variance (in %) 0.1503 0.2581 0.3237 0.3858 0.4388 0.4857 0.5295 0.5724 0.6105 0.6468 0.6816
Note that the loadings highlighted in red are relatively large ineach column.
Table 6
p-Values for one way ANOVA tests where the mean component scores are equally likely from pregnant women groups: the MIREC Study.
Variable PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11
Education <0.001""" 0.871 0.021" 0.768 0.817 0.919 0.494 <0.001""" <0.001""" 0.534 0.123
Income ($) <0.001™* 0387 0.001%** 0.470 0.072" 0.129 0.414 <0001 <0.001™* 0.425 0.293
Birth place <0.001"""  0.088°  <0.001""" 0.000"" 0.001"*" 0.0217" <0001  <0.001™"  <0.001""" 0.398 0.090
Pre-pregnancy BMI ~ <0.001"""  0.499 0.086" 0.752 0.437 0.134 0.083" 0.106 0.028"" 0.675 0.873
Parity <0.001"* 0485 <0001 <0.001"* 0.559 <0.001*** 0.595 <0.001""* 0.369 0913 0.939
Smoking status <0.001"*  0.664 0.491 0.442 0219 0.172 <0.001"*  <0.001"*  <0.001"*  <0.001™  <0.001™*
Maternal age <0001 0539 0.123 <0.001""  <0.001"" 0.001"" 0645 <0001 0.526 0214 0231
Clusters® <0.001""" 0.062" <0.001""" <0.001""" <0.001""" 0.075" <0.001""" <0.001""" <0.001""" 0.041"" 0.363

2 As obtained from the output of cluster analysis.
* Means the p-value is <10%.
** 5%.
1%,
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Table 7
Tukey's HSD tests for PC1.
PC1
Difference 95% C.I. p-Value
Education
College diploma - high school or less —0.655 (—0.825, —0.485) <0.001 -
Undergraduate university degree - high school or less —0.784 (—1.043, —0.525) <0.001 o
Graduate university degree - high school or less —1.116 (—1.537, —0.694) <0.001 o
Undergraduate university degree - college diploma —0.129 (—0.391,0.133) 0.586
Graduate university degree - college diploma —0.460 (—0.883, —0.037) 0.027 **
Graduate university degree - undergraduate university degree —0.332 (—0.798,0.134) 0.260
Income ($)
50,001 - 100,000 - 50,000 0.154 (—0.180, 0.488) 0.525
>100.000 - <50,000 0.566 (0.231,0.901) <0.001
>100.000 - 50,001 - 100,000 0.412 (0.152,0.672) 0.001
Birth place
Canada - not-Canada 2.024 (1.796, 0.253) <0.001 o
Pre-pregnancy BMI
“18.5-24" - “<18.5” 0.277 (—0.438,0.992) 0.753
“25-29” - “<18.5” —0.062 (—0.810, 0.686) 0.997
“>30” - “<18.5” —0.417 (—1.192,0.358) 0.510
“25-29” - “18.5-24" —0.339 (—0.656, —0.021) 0.031 -
“230" - “18.5-24" —0.693 (—1.070, —0.316) <0.001 -
“>30” - “25-29" —0.355 (—0.790, 0.081) 0.156
—0.438 (—0.710, —0.166) <0.001 -
—0.671 (—1.086, —0.256) <0.001
—1.186 (—1.860, —0.512) <0.001
—0.233 (—0.653,0.186) 0.480
“34 o —0.748 (—1.425, —0.071) 0.023 *
“347 -2 —0.515 (—1.261,0.231) 0.286
Smoking status
Former - never 0.091 (—0.199, 0.381) 0.852
Quit during the pregnancy - never —0.407 (—0.944,0.129) 0.207
Current - never —0.922 (—1.469, —0.376) <0.001
Quit during the pregnancy - former —0.498 (—1.064, 0.068) 0.107
Current - former —1.013 (—1.588, —0.438) <0.001 o
Current - quit during the pregnancy —0.515 (—1.246,0.216) 0.268
Clusters®
A 1.844 (1.182, 0.506) <0.001
“3n 1.177 (0.524,1.831) <0.001
“groeqr —0.802 (—1.174, —0.430) <0.001
v g —0.558 (—0.891, —0.225) <0.001
“6" - 1" 1.872 (1.430,0.315) <0.001
“3m - —0.667 (—1.555,0.222) 0.267
“4r - —2.646 (—3.353, —1.939) <0.001
g un —2.402 (—3.089, —1.715) <0.001
“6" -2 0.028 (—0.718,0.775) 1.000
“4r -3 —1.979 (—2.678, —1.280) <0.001
5 ugn —1.735 (—2.415, —1.056) <0.001
“6" -3 0.695 (—0.044, 1.434) 0.079 "
“5” - 4" 0.244 (—0.172,0.659) 0.549
“G" - gr 2.674 (2.167,3.182) <0.001
46" - 5" 2431 (1.951,1.910) <0.001

a

Cluster 1 included women born in Canada with a high income level and high education level; Cluster 2 included women born outside of Canada and with a pre-pregnancy BMI lower

than 25; Cluster 3 included women born in Canada with a middle income level; Cluster 4 included women who were born outside of Canada and with a pre-pregnancy BMI at least 25;

Cluster 5 included women born in Canada with a low income level; and, Cluster 6 included women born in Canada with a high income level and low education level.

* Means the p-value is <10%.
** 5%,
1%,

significant. In terms of cluster analysis results, women in clusters 1 and
5 have a significant high level of PC8 (dominated by all OCs, PFOA, Pb
and Cd) than the rest. Also, women in cluster 4 have a significantly
higher level of cadmium among all six clusters.

3.5.1. PC3 and PC4 scores

PC3 and PC4 scores were dominated by the same chemical mixtures
(dimethylarsinic acid (DMAA), dimethylthiophosphate (DMTP),
dimethylphosphate (DMP), perfluorooctanoic acid (PFOA),
perfluorooctane sulfonate (PFOS), and perfluorohexane sulfonate
(PFHXS), as shown in Table 5) and all dominating values of the corre-
sponding eigenvectors for the chemicals were positive, with the excep-
tion of PFOA, PFOS, and PFHXS for PC3. Intuitively, PC4 should be a better

component to identify the association between the scores and the char-
acteristics of the participants since almost all of its loadings are positive,
suggesting that higher scores indicate higher exposure. The fact that
PC3 has some negative and some positive values is more difficult to in-
terpret; however, the p-values for many of the associations of PC3 with
socio-demographic characteristics are significant. In an effort to explain
these results, scatterplots of PC3 and PC4 scores by socio-demographic
variables were created (Fig. 2). These show a moderate negative linear
correlation between the PC3 and PC4 scores. Further investigations
(Supplemental material, Figs. S1-S3) demonstrated that, given the
characteristics of the participants, the participants who had higher con-
centrations of PFOA, PFOS, and PFHxS had relatively lower concentra-
tions for DMAA, DMTP and DMP. For example, in Fig. S1 those with
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Fig. 2. Scatterplots of PC3 and PC4

high school education or less have the highest mean chemical levels in
DMAA, DMTP and DMP but the lowest mean chemical levels in PFOA,
PFOS, and PFHXS.

4. Discussion

A longstanding and complex issue is how to evaluate and conse-
quently limit exposure to chemical mixtures during pregnancy. Humans
are frequently exposed to multiple chemicals and stressors simulta-
neously; however, previous analyses of MIREC data (Arbuckle et al.,
2014; Arbuckle et al., 2015; Ashley-Martin et al., 2015; Colapinto et al.,
2015; Shapiro et al.,, 2015; Thomas et al,, 2015; Vélez et al., 2015) have
investigated either exposure to or potential adverse health effects of en-
vironmental chemicals on pregnancy and infant health but with a focus
on individual chemicals. Recognizing that single chemical models can-
not reflect the real world of complex chemical mixtures, the present sta-
tistical analysis identified chemical mixtures and investigated the
impact of socio-demographics on the type of mixtures to which preg-
nant women are exposed to help identify patterns of exposure to multi-
ple chemicals. The results of cluster analysis described the selected
seven socio-demographic variables simultaneously and statistical dif-
ferences were noted.

Kim et al. (2015) applied PCA to analyze a series of heavy metals and
POPs. Scatterplots of the loadings of the components were used to ex-
amine the prenatal exposure pattern; however, this method is question-
able since the loadings of the components should be used to convert the
data into scores for further analysis. Agay-Shay et al. (2015) collected
data from 27 endocrine-disrupting chemicals and used PCA to examine
the association between the prenatal exposures and characteristics of
children at 7 years old. Four principal components were generated
that accounted for 43.4% of the total variance in the data. For each of
the components, the participants were divided into three groups
based on the factor scores and the association between the characteris-
tic and exposure were examined within tertiles. Robinson et al. (2015)
evaluated 81 chemicals (also categorized into 13 exposure families) in
blood/urine samples obtained throughout pregnancy for 728 women
in the INMA birth cohort during 2004 to 2006 and applied PCA to each
exposure family and across all 81 exposures. Only the number of com-
ponents required to explain certain percentages of cumulative variance
by each exposure family and across all 81 exposures individually were
reported in their study, and a detailed analysis by demographic vari-
ables was not included. Veyhe et al. (2015) analyzed 22 chemicals
(eight PCBs, four OCs, five essential and five toxic elements) in serum
or whole blood of pregnant women recruited as part of the MISA
Study in Northern Norway along with the characteristics of the partici-
pants. The first six PCA components which accounted for 74% of the
source variation were kept for further analysis. Multiple linear regres-
sions were adopted for modeling the relationship between the compo-
nents and participants' characteristics; however, the values of the
coefficients of the determinations were not high (ranged from 0.04 to

scores by socio-demographic variables.

0.426). The advantages of using linear regressions are to build a model
for predictive purpose, while the disadvantage is the inability of the
method to evaluate detailed pairwise comparisons. Our results were
most similar to those reported by Veyhe et al. (2015) as chemical con-
centrations were found to have some associations with maternal age,
parity and pre-pregnancy BMI. Other studies using principal component
analysis have shown that POPs dominate one component which is con-
sistent with our results (Kim et al., 2015; Agay-Shay et al., 2015;
Robinson et al., 2015; Veyhe et al., 2015).

By combining some results from both Table 5 and the correlation
matrix (as shown in Fig. 1), the PCA results also captured the linear cor-
relation structure among the chemicals. Six chemicals (PCB118, PCB138,
PCB153, PCB180, OXYCHLOR and TRANSNONA) that dominated PC1 are
relatively highly and linearly correlated and the largest subgroup
among the 28 chemicals. PCB118, PCB138, PCB153, PCB180, OXYCHLOR
and TRANSNONA are persistent organic pollutants, where the major
source is meat and dairy. The highest concentrations are found in ani-
mals at the top of the food chain, including humans (Health Canada,
2005, 2010). Therefore, we were not surprised to observe that these
chemicals were highly correlated and dominate one component.

Three phthalates (MEOHP, MEHHP AND MEHP) that dominated the
second component are also highly and linearly correlated. MEOHP,
MEHHP and MEHP are the metabolites of di-2-ethylhexyl phthalate
(DEHP) (Koch et al., 2003); hence, one would expect them to be clus-
tered together. DEHP is widely used in food packaging, cosmetics and
personal care products including fragrances, soft PVC products, building
and furniture materials, and medical devices (Zarean et al., 2016). DEHP
has been one of the most important plasticizers used in Canada
(Environment Canada, Health Canada, 1994), so it is not surprising
that human exposure to DEHP is nearly ubiquitous (Environment &
Human Health, Inc., 2008). In our study MEOHP, MEHHP and MEHP
were found in >98% of the urine samples. Instead of examining if preg-
nant women are highly exposed to a certain chemical, PCA allowed us to
examine whether pregnant women were highly exposed to a certain
group of chemicals. A drawback of the principal component analysis is
the difficulty of interpretation when the components have both large
positive or small negative eigenvectors, as it is unable to decide which
chemicals define the particular component. For the same reason it is
also difficult to name the components. For cluster analysis, results may
differ due to different choices of the dissimilarity matrix and linking al-
gorithms; however, sensitivity analysis using various approaches may
be used to help interpret results.

There are a number of limitations in our analysis. For chemical levels
below the limit of detection, we substituted a constant (LOD/2) in order
to use standard statistical methods. This substitution may lead to issues
of bias and underestimated variance in hypothesis testing (Helsel, 2006;
Nie et al., 2010; Nysen et al., 2012). Imputation methods, such as regres-
sion on order statistics (Helsel, 2012) or multiple imputation by chained
equations (White et al. 2011; Royston and White, 2011), are available.
However, regression on order statistics is suitable for a small data set
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for which all nondetects are ordered and multiple imputations by
chained equations require highly correlated variables. Despite these
methods, further development of statistical methods to account for
non-detects in multivariate analysis is a worthy endeavour. Further,
only one urine sample is used to measure non-persistent chemicals
which may result in measurement error.

In conclusion, our results show the association between certain
socio-demographic characteristics of the population of pregnant
women and the presence of residual mixtures of common chemicals
in their blood and urine. The identification of patterns of chemicals
and associated patterns of pregnant women with high exposures
using advanced statistical approaches is an important first step of anal-
ysis. Future research would benefit from examining the effect of chem-
ical mixtures identified in this type of analysis on the potential for
adverse health effects in pregnant women or their children, in order
to better inform risk assessments. Last but not least, other statistical ap-
proaches, for example a nonlinear model or a linear model including in-
teractions between covariates, may also be considered in future analysis
of chemical mixtures.
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