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a b s t r a c t

Background: Studies report increases in rates of gestational diabetes mellitus (GDM) over recent decades.
Environmental chemicals may increase the risk of diabetes through impacts on glucose metabolism,
mitochondrial dysfunction, and endocrine-disrupting mechanisms including effects on pancreatic β-cell
function and adiponectin release.
Objectives: To determine the associations between pesticides, perfluoroalkyl substances (PFASs) and
polychlorinated biphenyls (PCBs) measured in early pregnancy and impaired glucose tolerance (IGT) and
GDM in a Canadian birth cohort.
Methods: Women enrolled in the Maternal-Infant Research on Environmental Chemicals (MIREC) Study
were included if they had a singleton delivery and did not have pre-existing diabetes. Exposure variables
included three organophosphorus (OP) pesticide metabolites detected in first-trimester urine samples, as
well as three organochlorine (OC) pesticides, three PFASs, and four PCBs in first-trimester blood samples.
Gestational IGT and GDM were assessed by chart review in accordance with published guidelines. Ad-
justed logistic regression models were used to calculate odds ratios (ORs) and 95% confidence intervals
(CI) for the association between quartiles of environmental chemicals and both gestational IGT and GDM.
Results: Of the 2001 women recruited into the MIREC cohort, 1274 met the inclusion criteria and had
outcome and biomonitoring data available. Significantly lower odds of GDM were observed in the third
and fourth quartiles of dimethylphosphate (DMP) and in the fourth quartile of dimethylthiophosphate
(DMTP) in adjusted analyses (DMP Q3: OR¼0.2, 95% CI¼0.1–0.7; DMP Q4: OR¼0.3, 95% CI¼0.1–0.8;
DMTP: OR¼0.3, 95% CI¼0.1–0.9). Significantly elevated odds of gestational IGT was observed in the
second quartile of perfluorohexane sulfonate (PFHxS) (OR¼3.5, 95% CI¼1.4–8.9). No evidence of asso-
ciations with GDM or IGT during pregnancy was observed for PCBs or OC pesticides.
Conclusions: We did not find consistent evidence for any positive associations between the chemicals we
examined and GDM or IGT during pregnancy. We observed statistical evidence of inverse relationships
between urine concentrations of DMP and DMTP with GDM. We cannot rule out the influence of residual
Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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confounding due to unmeasured protective factors, such as nutritional benefits from fruit and vegetable
consumption, also associated with pesticide exposure, on the observed inverse associations between
maternal OP pesticide metabolites and GDM. These findings require further investigation.
& 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Diabetes is a substantial and growing public health problem
(International Diabetes Federation, 2013), and increasing rates of
gestational diabetes mellitus (GDM) form part of this trend (Da-
venport et al., 2010; Feig et al., 2014; Galtier, 2010). Evidence
suggests that the etiology of diabetes is likely multifactorial (Public
Health Agency of Canada, 2011) and that environmental chemicals
may play a role along with more traditional risk factors such as
excess caloric consumption, lack of physical activity and increased
BMI (Bezek et al., 2008; Kuo et al., 2013; Thayer et al., 2012).
However, examination of the environmental chemical hypothesis
with regards to GDM has been more limited (Ettinger et al., 2009;
Robledo et al., 2013; Saldana et al., 2007; Saunders et al., 2014).
The potential health effects of perinatal chemical exposures
(Newbold, 2011) and GDM (Aerts and Van Assche, 2006; Osgood
et al., 2011) are a concern for subsequent maternal and offspring
metabolic health.

Organophosphates (OPs) are the most widely used class of
pesticides for agricultural and landscape pest control (Rezg et al.,
2010). The primary route of exposure is via ingestion of con-
taminated food (Lu et al., 2008). These pesticides are metabolized
relatively quickly and are not persistent in the environment
(Lambert et al., 2005). The dialkyl phosphate metabolites, rather
than the parent compounds, are used as non-specific biomarkers
of exposure in urine. Evidence from human and animal studies
supports a potential role for OPs in the development of obesity and
type 2 diabetes (Rahimi and Abdollahi, 2007; Rezg et al., 2010).

Epidemiologic studies have also shown associations between
organochlorine (OC) pesticides and diabetes (Azandjeme et al.,
2014; Cox et al., 2007; Gray et al., 2013; Hectors et al., 2011; Lee
et al., 2011a; Philibert et al., 2009; Rignell-Hydbom et al., 2009,
2007; Son et al., 2010; Turyk et al., 2009a, 2009b; Ukropec et al.,
2010). While OC pesticides are no longer registered for use in
Canada, they are persistent in the environment, and trace amounts
may still be found in food products. Finally, epidemiologic evi-
dence also suggests a potential role for other classes of chemicals
including perfluoroalkyl substances (PFASs) (Lin et al., 2009;
Steenland et al., 2010; Zhang et al., 2015) and polychlorinated bi-
phenyls (PCBs) (Carpenter, 2008; Everett et al., 2011) in the de-
velopment of diabetes.

The above-mentioned chemical classes are hypothesized to
increase risk of diabetes through modulation of glucose metabo-
lism (OP compounds and PFAS) (Hectors et al., 2011; Lv et al., 2013;
Rahimi and Abdollahi, 2007), mitochondrial dysfunction (OC pes-
ticides and PCBs) (Lee et al., 2014), and endocrine-disrupting
mechanisms (OC pesticides and PCBs) (Lee et al., 2014) including
effects on pancreatic β-cell function (PCBs) (Gray et al., 2013;
Hectors et al., 2011) and adiponectin release (OC compounds)
(Howell and Mangum, 2011). However, exploration of these che-
micals in relation to GDM has been limited (Saldana et al., 2007;
Saunders et al., 2014). In light of the current literature, we
speculated that exposure to the above-mentioned chemical classes
may be associated with GDM or impaired glucose tolerance (IGT)
during pregnancy. Using data from a Canadian birth cohort, the
present study sought to determine whether exposure to OP or OC
pesticides, PFAS or PCBs, measured early in pregnancy in maternal
blood and urine, was associated with increased risk of GDM or IGT
during pregnancy.
2. Materials and methods

2.1. Study sample

The Maternal-Infant Research on Environmental Chemicals
(MIREC) Study is a longitudinal birth cohort study conducted in
Canada. Further details concerning inclusion and exclusion criteria
and study objectives and procedures have been published else-
where (Arbuckle et al., 2013). The present analysis used the same
subset of the MIREC study sample as our previous work looking at
GDM and gestational IGT in relation to metals and phthalates
(Shapiro et al., 2015). Briefly, participants were included if they
gave birth to a live singleton, had sufficient data from the glucose
challenge test (GCT) and/or oral glucose tolerance test (OGTT) to
determine a diagnosis of GDM and gestational IGT, and had ex-
posure data available for at least one of the chemicals investigated
(PCBs, OC pesticides, OPs, and PFASs). All participants signed in-
formed consent forms and the study received ethical approval
from Health Canada and all the study centres.

2.2. Chemical Biomonitoring data

First trimester urine samples were analysed for six OP pesticide
metabolites (diethylphosphate (DEP), diethyldithiophosphate (DEDTP),
diethylthiophosphate (DETP), dimethylphosphate (DMP), di-
methylthiophosphate (DMTP), dimethyldithiophosphate (DMDTP)).
Eleven OC pesticides (p,p′-dichlorodiphenyldichloroethylene (DDE),
oxychlordane, trans-nonachlor, aldrin, alpha-chlordane, gamma-
chlordane, cis-onachlor, gamma-hexachlorocylcohexane (γ-HCH),
p,p′-dichlorodiphenyltrichloroethane (p,p′-DDT), hexachlorobenzene
(HCB), mirex)), three PFASs (perfluorooctanoic acid (PFOA), per-
fluorooctane sulfonate (PFOS), perfluorohexane sulfonate (PFHxS)),
and 24 PCBs were measured in first trimester plasma samples. We
focused our analyses on exposures for which there were detectable
levels in 475% of subjects. This included three OP pesticide meta-
bolites (DEP, DMP, DMTP), three OC pesticides (p,p′- DDE, oxychlor-
dane, trans-nonachlor), all three PFASs and four PCB congeners
(2,3′,4,4′,5-pentachlorobiphenyl (PCB118), 2,2′,3,4,4′,5′-hexachloro-
biphenyl (PCB138), 2,2′,4,4′,5,5′-hexachlorobiphenyl (PCB153), 2,2′,3,
4,4′,5,5′-heptachlorobiphenyl (PCB180)).

All chemical analyses were carried out at the Toxicology Centre
of the Quebec Institute of Public Health (Institut national de santé
publique du Québec), accredited by the Standards Council of Ca-
nada under ISO 17025 and CAN-P-43. The accuracy and precision
of the analyses are evaluated on a regular basis through the la-
boratory's participation in external quality assessment programs
(Arbuckle et al., 2013). OC pesticides and PCBs were analyzed by
gas chromatography—mass spectrometry using the Agilent 6890N/
5973. Plasma samples were enriched with internal standards and
halogenated organic compounds were retrieved by liquid-liquid
extraction with a mixture of ammonium sulfate:ethanol:hexane
(1:1:3). Extracts were concentrated, automatically purified on
florisil column and then analyzed by gas chromatography coupled



Table 1
Study sample characteristics (N¼1274).

Variable n (%)

Age r29 308 (24.2)
30–34 447 (35.1)
Z35 515 (40.4)
Missing 4 (0.3)

Pre-pregnancy BMI (kg/m2) Underweight or Normal (o25)a 752 (59.0)
Overweight (25–29.9) 257 (20.2)
Obese (Z30) 191 (15.0)
Missing 74 (5.8)

Parity Nulliparous 563 (44.2)
Parous 709 (55.7)
Missing 2 (0.2)

Education High school diploma or less 106 (8.3)
Some college, or trade school 352 (27.6)
Undergraduate university degree 477 (37.4)
Graduate university degree 338 (26.5)
Missing 1 (0.1)

Household Income ($CAD) r50,000 209 (16.4)
50,001–100,000 505 (39.6)
Z100,000 506 (39.7)
Missing 54 (4.2)

Race White 1077 (84.5)
Non-White 197 (15.5)

Smoking Never or quit before pregnancy 1124 (88.2)
Quit when knew pregnant 93 (7.3)
Current smoker 56 (4.4)
Missing 1 (0.1)

a Underweight and Normal BMI were combined because of the small number
of underweight participants (34 (2.7%)).
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to a mass spectrometer. Measurements of ions generated after
negative chemical ionization were performed in selective ion
mode. PFASs were analyzed using the Waters Acquity
UPLC-MS-MS. Analytes were extracted at alkaline pH with methyl
tertbutyl ether and ion pairing with tetrabutylammonium hydro-
gensulfate, evaporated to dryness and dissolved in the mobile
phase. They were then analyzed by UPLCMS-MS operated in the
MRM mode with an electrospray ion source in negative mode.
Concentrations below the limit of detection (LOD) were sub-
stituted as one half the LOD.

2.3. Impaired glucose tolerance in pregnancy and gestational dia-
betes mellitus

Gestational IGT and GDM were assessed by chart review based
on the results of a 50 g glucose challenge test (GCT) and 75 or
100 g oral glucose tolerance test (OGTT), in accordance with
guidelines from the Canadian Diabetes Association and the Society
of Obstetricians and Gynaecologists of Canada (Berger et al., 2002;
Canadian Diabetes Association Clinical Practice Guidelines Expert
Committee, 2008). The algorithm used to calculate gestational IGT
and GDM is described in our previous work with this cohort
(Shapiro et al., 2015). Briefly, gestational IGT was diagnosed if one
of the OGTT cut-off values was met or exceeded, whereas GDM
required at least 2 values at or above the cut-off values.

2.4. Statistical analyses

Descriptive statistics for maternal demographic and clinical
characteristics were calculated according to study outcomes
(normal blood glucose, gestational IGT, GDM) using frequency
distributions and chi-square tests of significance. Geometric
means and standard deviations were calculated for chemical
concentrations according to study outcomes. In determining the
geometric mean, concentrations of OP pesticide metabolites were
adjusted for urinary specific gravity (SG) according to the follow-
ing formula: Pc¼Pi [(SGm�1)/(SGi�1)], where Pc¼SG-adjusted
metabolite concentration (mg/ml), Pi¼observed metabolite con-
centration, SGi¼specific gravity of the urine sample, and
SGm¼median SG for the cohort (Just et al., 2010).

All contaminant concentrations were grouped into quartiles for
analyses, and logistic regression models were used to examine
associations between quartiles and study outcomes. In calculating
odds ratios for these outcomes, we examined subjects with GDM
vs. normal blood glucose, gestational IGT vs. normal glucose, and
subjects with either gestational IGT or GDM grouped together vs.
normal blood glucose. In addition to the individual contaminants,
we also examined the summed molar concentrations of dimethyl
OP metabolites (DMP and DMTP) (Arcury et al., 2006), the sum of
all PCBs, sum of non-dioxin-like PCBs (PCBs 138, 153 and 180), and
the PCB mixture Aroclor 1260 (calculated by multiplying the sum
of the wet weight concentration of PCBs 153 and 138 by 5.2
(Health Canada, 2010)).

We examined the following maternal variables as potential
confounders: age at delivery, pre-pregnancy BMI (o25, 25-29.9,
Z30 kg/m2), parity (nulliparous vs. parous), household income
(r$30,000, 30,001–50,000, 50,001–100,000, 4100,000), educa-
tion (high school diploma or less, some college or trade school,
undergraduate university degree, graduate university degree), race
(White, non-White), and smoking (never or quit before pregnancy,
quit when knew pregnant, current smoker). Variables were se-
lected a priori for inclusion in multivariable models on the basis of
association with gestational IGT and GDM in univariate analyses
(po0.1) or on the basis of evidence of an association from the
literature. Specific gravity was included as a covariate in all ad-
justed models for OP pesticide metabolites to account for
heterogeneity in urinary dilution (Arbuckle et al., 2014). Total li-
pids were included as a covariate in all adjusted models for PCBs
and OC pesticides (Schisterman et al., 2005). In light of collinearity
between income and education, and as model results were not
substantially different with adjustment for both income and
education vs. adjustment for education only, we did not adjust for
income in the final models.

For models with statistically significant associations, we used
restricted cubic spline analysis to further examine the dose-re-
sponse relationship (Desquilbet and Mariotti, 2010). This techni-
que is applicable when there is no a priori hypothesis regarding
the shape of the dose-response association, and it overcomes in-
herent limitations of our categorical analyses. Knots were set at
the 5th, 50th, and 95th percentiles and the referent value was set
to the 5th percentile. Regression analyses were carried out using
IBM-SPSS for Windows version 20 and spline analyses were car-
ried out using SAS 9.4.
3. Results

Of the 2001 women recruited, 18 withdrew and asked that all
their data and biospecimens be destroyed (0.9%). Of the remaining
1983 subjects, 97 in total were excluded (4.9%) because of a mul-
tiple pregnancy (n¼48), stillbirth (n¼21), pre-existing diabetes
(n¼24), or having no biological samples available for the mea-
surement of any of the contaminants of interest (n¼4), leaving
1886 subjects. Of these, information from a GCT or OGTT was
available to calculate the study outcomes for 1274 women (67.6%).
Excluded participants were slightly less likely to be obese (10.3%
vs. 15.0% of included participants, p¼ .05) and slightly more likely
to report being White (88.1% vs. 84.5%, p¼ .04) and to be current
smokers (7.5% vs. 4.4%, p¼ .04).

Table 1 shows the characteristics of the study sample. Partici-
pants were between the ages of 18 and 49 (mean (SD)¼33.0 (4.9)
years), with 40% aged 35 or older. Twenty percent of participants
were overweight before becoming pregnant and 15% were obese.



Table 2
Geometric mean of organophosphorus pesticide metabolites, organochlorine pesticides, perfluoroalkyl substances, and polychlorinated biphenyls by GDM and gestational
IGT outcomes.

Chemical (μg/L) LOD % 4LODa Total Nb Geometric Mean (SD)

Normal glucose N¼1167 Gestational IGT cases N¼48 GDM cases N¼59

Organophosphorus pesticide metabolitesc

Diethylphosphate (DEP) 1.00 77.8 1247 2.50 (2.33) 2.55 (2.67) 2.28 (2.42)
Dimethylphosphate (DMP) 1.00 79.8 1246 3.34 (2.68) 2.18 (2.94) 2.22 (2.53)
Dimethylthiophosphate (DMTP) 0.60 81.0 1245 3.64 (3.94) 2.25 (5.23) 2.18 (3.52)

Organochlorine pesticides
p,p′-Dichlorodiphenyldichloroethylene (DDE) 0.09 98.2 1250 0.36 (2.36) 0.47 (2.90) 0.32 (1.95)
Oxychlordane 0.005 90.8 1249 0.012 (1.919) 0.012 (1.926) 0.012 (2.030)
Trans-Nonachlor 0.01 84.0 1249 0.017 (1.968) 0.019 (2.161) 0.017 (2.121)

Perfluoroalkyl substances
Perfluorooctanoic acid (PFOA) 0.10 99.8 1259 1.68 (1.80) 1.70 (1.73) 1.64 (1.64)
Perfluorooctane sulfonate (PFOS) 0.30 99.8 1259 4.58 (1.81) 4.29 (1.60) 4.74 (1.67)
Perfluorohexane sulfonate (PFHxS) 0.20, 0.30 96.1 1259 1.02 (2.31) 1.00 (1.79) 1.05 (2.03)

Polychlorinated biphenyls
2,3′,4,4′,5-Pentachlorobiphenyl (PCB118) 0.01 74.7 1250 0.014 (2.057) 0.015 (2.088) 0.014 (2.091)
2,2′,3,4,4′,5′-Hexachlorobiphenyl (PCB138) 0.01 92.9 1250 0.026 (2.118) 0.028 (2.135) 0.025 (2.223)
2,2′,4,4′,5,5′-Hexachlorobiphenyl (PCB153) 0.01 97.9 1250 0.047 (2.129) 0.048 (2.218) 0.044 (2.212)
2,2′,3,4,4′,5,5′-Heptachlorobiphenyl (PCB180) 0.01 92.2 1250 0.030 (2.371) 0.030 (2.271) 0.029 (2.470)
Aroclor 1260 0.10 98.1 1250 0.381 (2.112) 0.396 (2.152) 0.365 (2.157)

a The following chemicals had less than 75% of the samples above the LOD and were excluded from further analyses: Organophosphorus pesticide metabolites: Die-
thylthiophosphate (DETP), Diethyldithiophosphate (DEDTP), Dimethyldithiophosphate (DMDTP); Organochlorine Pesticides: Aldrin, alpha-Chlordane, gamma-Chlordane,
cis-Nonachlor, gamma-Hexachlorocylcohexane (γ-HCH), p,p′-Dichlorodiphenyltrichloroethane (p,p′-DDT), Hexachlorobenzene (HCB), Mirex; PCBs: 28, 52, 66, 74, 99, 101,
105, 128, 146, 156, 163, 167, 170, 178, 183, 187, 194, 201, 203, 206.

b Number of subjects with data available for each exposure.
c Geometric mean concentrations for organophosphorus pesticide metabolites are adjusted for urinary specific gravity.
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More than 60% of participants had an undergraduate university
degree, and more than a quarter had a graduate degree. Forty
percent of participants had an annual household income of at least
$100,000 Canadian, while only 16% had household income below
$50,000. Fifteen percent of participants reported non-White race,
and less than 5% of study subjects smoked during pregnancy.
Forty-eight participants (3.8%) were identified as GDM cases and
59 (4.6%) were identified as having gestational IGT. The distribu-
tion of maternal characteristics by diabetes status has been de-
scribed in our previous work (Shapiro et al., 2015). As expected,
GDM and gestational IGT cases were more likely to be overweight
or obese compared to subjects with normal blood glucose.

Table 2 shows the percentage of samples above the LOD and
the geometric mean for each chemical analyzed, stratified by the
three outcome categories (normal blood glucose, gestational IGT,
GDM). Pearson correlations (data not shown) between OP pesti-
cide metabolites ranged from .26 (DEP and DMTP) to .66 (DMP and
DMTP). Correlations among OC pesticides ranged from .39 (DDE
and oxychlordane) to .82 (oxychlordane and trans-nonachlor).
Among PFASs, correlations ranged from .45 (PFOA and PFHxS) to
.56 (PFOA and PFOS), while correlations among PCB congeners
ranged from .65 (PCBs 118 and 180) to .96 (PCBs 138 and 153) (all
p-values for correlations between different chemicals in each class
were o0.01). Across chemical classes, the highest correlations
observed were those between OC pesticides and PCBs, which
ranged from 0.45 (DDE and PCB 180) to 0.59 (Transnonachlor and
PCB 138). Correlations between PFAS and both PCBs and OC pes-
ticides were below 0.3, and those between all other chemical
classes were below 0.1.

Table 3 shows the crude and adjusted odds ratios of each of the
study outcomes (GDM vs. normal glucose, gestational IGT vs.
normal glucose, gestational IGT or GDM vs. normal glucose) by
quartile of contaminant concentrations. In comparing odds of
GDM in the upper three quartiles vs. the lowest quartile for OP
pesticides, inverse associations were observed for DMP and DMTP.
Associations were statistically significant for the third and fourth
quartiles of dimethylphosphate (DMP) and for the fourth quartile
of dimethylthiophosphate (DMTP) (DMP Q3: OR¼0.2, 95%
CI¼0.1–0.7; DMP Q4: OR¼0.3, 95% CI¼0.1–0.8; DMTP: OR¼0.3,
95% CI¼0.1–0.9), with significant dose-response relationships
observed across quartiles for both compounds. A similar pattern
was observed for the combined GDM/IGT outcome. Evidence of
inverse associations with the outcome of gestational IGT only were
also observed for these two contaminants (p-value for trend¼0.07
for DMP, 0.12 for DMTP). Significantly reduced odds of gestational
IGT were also observed in the third quartile of DEP (OR¼0.2, 95%
CI¼0.1–0.6).

A significant dose-response relationship was observed in the
cubic spline model between dimethyl OP metabolites and odds of
GDM (p¼0.02 for both exposures) (Fig. 1). A test of the null hy-
pothesis that the relationship between dimethyl metabolite levels
and odds of GDM is linear was not rejected (p¼0.19), suggesting a
linear association. An association of borderline significance was
observed in the cubic spline model for DEP and odds of gestational
IGT (p¼0.08), with statistical evidence of a non-linear association
(p¼0.03 for test of non-linearity) (Fig. 1).

In examining associations between PFASs and study outcomes,
elevated odds of gestational IGT were observed in the second
quartile of PFHxS (OR¼3.5, 95% CI¼1.4–8.9) in adjusted analyses.
A similar pattern, but with an attenuated odds ratio, was observed
for the combined GDM/IGT outcome (adjusted OR for second
quartile¼2.4, 95% CI¼1.3–4.4). A cubic spline model testing the
relationship between PFHxS and gestational IGT did not show
significant evidence of an overall association (p¼0.73) (Fig. 2). No
evidence of associations with GDM or gestational IGT was ob-
served for PCBs or OC pesticides (Table 3).
4. Discussion

In this longitudinal birth cohort study of Canadian women, we
evaluated the associations between maternal concentrations of OP
and OC pesticides, PFASs and PCBs with gestational IGT and GDM.
After adjustment for potential confounding variables, we observed



Table 3
Odds ratios (95% CI) for GDM, gestational IGT, and GDM or gestational IGT by contaminant quartiles.

Contaminant (μg/L) GDM (N¼44) vs. Normal Glucose (N¼1102)a Gestational IGT (N¼49) vs. Normal Glucose
(N¼1102)a

GDM or gestational IGT (N¼93) vs. Normal Glucose
(N¼1102)a

Unadjusted ORb (95%
CI)

Adjusted ORc (95%
CI)

Unadjusted OR (95% CI) Adjusted ORc (95% CI) Unadjusted OR (95% CI) Adjustedc OR (95% CI)

Organophosphorus pesticide metabolites
DEP Q1 (0.5–1.1) 1 1 1 1 1 1

Q2 (1.2–2.1) 1.2 (0.5–2.9) 1.1 (0.4–2.8) 0.6 (0.3–1.4) 0.5 (0.2–1.2) 0.9 (0.5–1.6) 0.7 (0.4–1.4)
Q3 (2.2–4.5) 1.0 (0.4–2.4) 0.9 (0.3–2.5) 0.3 (0.1–0.8) 0.2 (0.1–0.6) 0.5 (0.3–1.1) 0.4 (0.2–0.9)
Q4 (4.6–96) 1.2 (0.5–2.8) 1.2 (0.4–3.7) 1.1 (0.6–2.3) 0.8 (0.3–2.0) 1.1 (0.7–2.0) 0.9 (0.4–1.9)
p-valued 0.85 0.41 0.58

DMP Q1 (0.5–1.2) 1 1 1 1 1 1
Q2 (1.3–3) 1.0 (0.5–2.1) 0.8 (0.4–1.8) 0.6 (0.3–1.4) 0.6 (0.2–1.3) 0.8 (0.5–1.4) 0.7 (0.4–1.2)
Q3 (3.1–6.5) 0.3 (0.1–0.9) 0.2 (0.1–0.7) 0.7 (0.3–1.5) 0.5 (0.2–1.1) 0.5 (0.3–0.9) 0.3 (0.2–0.7)
Q4 (6.6–190) 0.5 (0.2–1.3) 0.3 (0.1–0.8) 0.6 (0.3–1.4) 0.4 (0.2–1.1) 0.6 (0.3–1.1) 0.3 (0.2–0.7)
p-valued o0.01 0.07 o0.01

DMTP Q1 (0.3–0.99) 1 1 1 1 1 1
Q2 (1–3.4) 0.8 (0.4–1.7) 0.8 (0.3–1.7) 1.3 (0.6–2.8) 1.3 (0.6–2.9) 1.0 (0.6–1.7) 1.0 (0.6–1.8)
Q3 (3.5–9.3) 0.5 (0.2–1.2) 0.5 (0.2–1.2) 1.0 (0.4–2.3) 0.9 (0.4–2.1) 0.7 (0.4–1.3) 0.6 (0.3–1.2)
Q4 (9.4–420) 0.4 (0.1–0.9) 0.3 (0.1–0.9) 0.6 (0.2–1.4) 0.5 (0.2–1.4) 0.4 (0.2–0.9) 0.4 (0.2–0.8)
p-valued 0.01 0.12 0.01

Dimethyl OP metabolites (DMP and
DMTP, nmol/L)

Q1 (2.5–26.4) 1 1 1 1 1 1
Q2 (26.5–58.7) 0.5 (0.2–1.1) 0.5 (0.2–1.1) 1.5 (0.7–3.1) 1.6 (0.7–3.3) 0.9 (0.5–1.5) 0.9 (0.5–1.6)
Q3 (58.9–120.3) 0.4 (0.2–1.0) 0.5 (0.2–1.0) 0.5 (0.2–1.3) 0.5 (0.2–1.4) 0.5 (0.2–0.9) 0.5 (0.3–0.9)
Q4 (120.4–
1615.2)

0.3 (0.1–0.8) 0.3 (0.1–0.8) 0.6 (0.2–1.4) 0.7 (0.3–1.7) 0.4 (0.2–0.8) 0.5 (0.2–0.9)

p-valued 0.01 0.11 o0.01
Organochlorine pesticides
DDE Q1 (0.05–0.21) 1 1 1 1 1 1

Q2 (0.22–0.31) 1.4 (0.6–3.5) 1.4 (0.6–3.5) 0.7 (0.3–1.6) 0.7 (0.3–1.7) 1.0 (0.5–1.8) 1.0 (0.5–1.8)
Q3 (0.32–0.49) 0.7 (0.3–2.0) 0.5 (0.2–1.6) 1.0 (0.5–2.1) 1.0 (0.4–2.2) 0.9 (0.5–1.7) 0.8 (0.4–1.5)
Q4 (0.5–26) 2.0 (0.9–4.7) 1.1 (0.4–2.9) 0.6 (0.3–1.5) 0.6 (0.2–1.6) 1.2 (0.7–2.1) 0.8 (0.4–1.6)
p-valued 0.74 0.49 0.43

Oxychlordane Q1 (0.003-
0.009)

1 1 1 1 1 1

Q2 (0.009–
0.013)

1.2 (0.5–2.8) 1.0 (0.4–2.4) 0.8 (0.4–1.8) 0.8 (0.3–1.7) 0.9 (0.5–1.7) 0.9 (0.5–1.6)

Q3 (0.014–
0.018)

0.9 (0.3–2.4) 0.8 (0.3–2.3) 0.6 (0.2–1.5) 0.6 (0.2–1.5) 0.7 (0.4–1.4) 0.6 (0.3–1.3)

Q4 (0.019–
0.130)

1.7 (0.7–3.9) 1.1 (0.4–2.8) 1.1 (0.5–2.5) 0.9 (0.4–2.3) 1.4 (0.8–2.4) 1.0 (0.5–1.9)

p-valued 0.95 0.83 0.82
Trans-nonachlor Q1 (0.005–

0.012)
1 1 1 1 1 1

Q2 (0.013–
0.018)

0.6 (0.2–1.6) 0.6 (0.2–1.6) 0.6 (0.3–1.4) 0.7 (0.3–1.6) 0.6 (0.3–1.2) 0.6 (0.3–1.2)

Q3 (0.019–
0.027)

1.3 (0.6–3.0) 1.2 (0.5–2.9) 0.7 (0.3–1.6) 0.7 (0.3–1.7) 0.9 (0.5–1.7) 0.9 (0.5–1.6)

Q4 (0.028–0.23) 1.7 (0.7–3.8) 1.2 (0.5–3.2) 0.9 (0.4–1.9) 0.8 (0.3–1.9) 1.2 (0.7–2.1) 0.9 (0.5–1.9)
p-valued 0.40 0.62 0.88

Perfluoroalkyl substances
PFOA Q1 (0.05–1.2) 1 1 1 1 1 1

Q2 (1.3–1.7) 0.9 (0.4–2.0) 0.9 (0.4–2.1) 1.1 (0.5–2.3) 0.9 (0.4–2.0) 1.0 (0.5–1.7) 0.9 (0.5–1.6)
Q3 (1.8–2.5) 0.9 (0.4–2.0) 1.0 (0.4–2.2) 0.9 (0.4–1.9) 0.7 (0.3–1.6) 0.9 (0.5–1.6) 0.8 (0.5–1.5)
Q4 (2.6–16) 0.6 (0.2–1.6) 0.9 (0.3–2.3) 0.7 (0.3–1.6) 0.7 (0.3–1.8) 0.6 (0.3–1.2) 0.8 (0.4–1.5)
p-valued 0.86 0.36 0.44
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Table 3 (continued )

Contaminant (μg/L) GDM (N¼44) vs. Normal Glucose (N¼1102)a Gestational IGT (N¼49) vs. Normal Glucose
(N¼1102)a

GDM or gestational IGT (N¼93) vs. Normal Glucose
(N¼1102)a

Unadjusted ORb (95%
CI)

Adjusted ORc (95%
CI)

Unadjusted OR (95% CI) Adjusted ORc (95% CI) Unadjusted OR (95% CI) Adjustedc OR (95% CI)

PFOS Q1 (0.15–3.3) 1 1 1 1 1 1
Q2 (3.4–4.6) 0.6 (0.3–1.5) 0.6 (0.3–1.6) 1.4 (0.6–3.0) 1.2 (0.5–2.8) 0.9 (0.5–1.7) 0.9 (0.5–1.7)
Q3 (4.7–6.8) 0.9 (0.4–2.0) 1.1 (0.5–2.5) 1.4 (0.6–3.1) 1.2 (0.6–2.8) 1.1 (0.6–2.0) 1.2 (0.6–2.1)
Q4 (6.9–36) 0.6 (0.2–1.4) 0.7 (0.3–1.7) 0.8 (0.3–2.0) 0.8 (0.3–2.1) 0.7 (0.4–1.3) 0.7 (0.4–1.4)
p-valued 0.70 0.74 0.59

PFHxS Q1 (0.1-0.66) 1 1 1 1 1 1
Q2 (0.67–1) 1.4 (0.6–3.3) 1.6 (0.7–3.8) 3.5 (1.4–8.8) 3.5 (1.4–8.9) 2.2 (1.2–4.1) 2.4 (1.3–4.4)
Q3 (1.1–1.6) 1.2 (0.5–2.8) 1.4 (0.6–3.5) 1.4 (0.5–4.1) 1.3 (0.5–4.0) 1.3 (0.6–2.5) 1.3 (0.6–2.7)
Q4 (1.7–40) 0.8 (0.3–2.0) 1.2 (0.4–3.5) 2.4 (0.9–6.3) 2.5 (0.9–7.0) 1.4 (0.7–2.7) 1.8 (0.9–3.6)
p-valued 0.73 0.44 0.47

Polychlorinated biphenyls
PCB118 Q1 (0.005–0.01) 1 1 1 1 1 1

Q2 (0.011–
0.015)

1.2 (0.5–2.9) 1.0 (0.4–2.6) 0.8 (0.4–1.8) 0.8 (0.4–1.8) 1.0 (0.5–1.8) 0.9 (0.5–1.6)

Q3 (0.016–
0.022)

1.3 (0.5–3.1) 0.9 (0.3–2.5) 0.7 (0.3–1.7) 0.6 (0.3–1.6) 0.9 (0.5–1.8) 0.7 (0.4–1.4)

Q4 (0.023–0.22) 1.7 (0.7–4.0) 1.4 (0.5–3.5) 1.0 (0.5–2.2) 0.9 (0.4–2.2) 1.3 (0.7–2.3) 1.1 (0.6–2.1)
p-valued 0.55 0.79 0.90

PCB138 Q1 (0.005–
0.017)

1 1 1 1 1 1

Q2 (0.018–
0.026)

2.0 (0.8–4.9) 1.8 (0.7–4.8) 0.6 (0.2–1.3) 0.6 (0.3–1.4) 1.0 (0.5–1.8) 1.0 (0.5–1.8)

Q3 (0.027–0.04) 1.5 (0.6–3.9) 1.3 (0.5–3.8) 0.7 (0.3–1.5) 0.7 (0.3–1.6) 0.9 (0.5–1.7) 0.9 (0.4–1.7)
Q4 (0.041–0.43) 1.9 (0.7–4.8) 1.5 (0.5–4.2) 0.8 (0.4–1.6) 0.8 (0.3–1.8) 1.1 (0.6–2.0) 1.0 (0.5–1.9)
p–valued 0.71 0.60 0.86

PCB153 Q1 (0.005–
0.029)

1 1 1 1 1 1

Q2 (0.03–0.044) 1.8 (0.7–4.4) 1.9 (0.7–4.8) 0.5 (0.2–1.2) 0.6 (0.2–1.3) 0.9 (0.5–1.7) 0.9 (0.5–1.8)
Q3 (0.045–0.07) 1.1 (0.4–2.9) 1.0 (0.3–3.0) 0.6 (0.3–1.4) 0.6 (0.2–1.4) 0.8 (0.4–1.4) 0.7 (0.4–1.4)
Q4 (0.071–0.93) 1.6 (0.7–4.0) 1.4 (0.5–4.1) 0.7 (0.3–1.4) 0.7 (0.3–1.7) 1.0 (0.5–1.7) 0.9 (0.5–1.8)
p-valued 0.82 0.42 0.65

PCB180 Q1 (0.005–
0.019)

1 1 1 1 1 1

Q2 (0.02–0.03) 1.4 (0.6–3.2) 1.5 (0.6–3.8) 0.6 (0.3–1.2) 0.5 (0.2–1.3) 0.9 (0.5–1.5) 0.9 (0.5–1.6)
Q3 (0.031–
0.049)

0.8 (0.3–2.0) 0.7 (0.2–2.2) 0.4 (0.2–1.0) 0.4 (0.1–1.1) 0.5 (0.3–1.1) 0.5 (0.2–1.1)

Q4 (0.05–1.1) 1.3 (0.6–3.1) 1.3 (0.5–3.5) 0.7 (0.4–1.6) 0.7 (0.3–1.8) 1.0 (0.5–1.7) 0.9 (0.5–1.8)
p-valued 0.98 0.48 0.60

Sum of all PCBs Q1 (0.02–0.075) 1 1 1 1 1 1
Q2 (0.076–
0.116)

1.6 (0.7–3.7) 1.4 (0.6–3.6) 0.6 (0.3–1.3) 0.6 (0.3–1.5) 1.0 (0.5–1.7) 0.9 (0.5–1.7)

Q3 (0.117–0.179) 0.8 (0.3–2.2) 0.7 (0.2–2.0) 0.5 (0.2–1.2) 0.5 (0.2–1.2) 0.6 (0.3–1.2) 0.6 (0.3–1.1)
Q4 (0.181–
2.491)

1.3 (0.5–3.0) 1.0 (0.3–2.7) 0.8 (0.4–1.6) 0.8 (0.3–2.0) 0.9 (0.5–1.7) 0.8 (0.4–1.7)

p-valued 0.60 0.58 0.43
Sum of non-dioxin-like PCBs (138, 153,
180)

Q1 (0.015–
0.065)

1 1 1 1 1 1

Q2 (0.066–0.1) 1.8 (0.8–4.4) 1.9 (0.7–4.7) 0.6 (0.3–1.4) 0.6 (0.3–1.5) 1.0 (0.6–1.8) 1.0 (0.5–1.9)
Q3 (0.101–
0.158)

0.9 (0.3–2.5) 0.8 (0.3–2.5) 0.5 (0.2–1.2) 0.5 (0.2–1.3) 0.6 (0.3–1.2) 0.6 (0.3–1.2)

Q4 (0.159–2.46) 1.6 (0.6–3.8) 1.3 (0.5–3.8) 0.8 (0.4–1.7) 0.8 (0.3–2.1) 1.0 (0.6–1.9) 1.0 (0.5–2.0)
p-valued 0.97 0.65 0.70

G
.D
.Shapiro

et
al./

Environm
ental

R
esearch

147
(2016)

71
–81

76



A
ro
cl
or

12
60

Q
1
(0
.0
5–

0.
24

)
1

1
1

1
1

1
Q
2
(0
.2
5–

0.
37

)
1.
6
(0
.7
–
4.
0)

1.
5
(0
.6
–
4.
0)

0.
6
(0
.3
–
1.
3)

0.
6
(0
.3
–
1.
5)

0.
9
(0
.5
–
1.
7)

0.
9
(0
.5
–
1.
7)

Q
3
(0
.3
8–

0.
58

)
1.
4
(0
.5
–
3.
5)

1.
2
(0
.4
–
3.
4)

0.
5
(0
.2
–
1.
2)

0.
5
(0
.2
–
1.
3)

0.
8
(0
.4
–
1.
5)

0.
7
(0
.4
–
1.
4)

Q
4
(0
.5
9–

7.
1)

1.
6
(0
.6
–
3.
9)

1.
3
(0
.4
–
3.
6)

0.
7
(0
.3
–
1.
6)

0.
8
(0
.3
–
1.
9)

1.
0
(0
.6
–
1.
8)

0.
9
(0
.5
–
1.
8)

p
-v
al
u
ed

0.
84

0.
46

0.
67

a
N
u
m
be

r
of

su
bj
ec
ts

w
it
h
d
at
a
fo
r
at

le
as
t
on

e
ex

p
os
u
re

m
ea

su
re
m
en

t
an

d
al
l
co

va
ri
at
es

in
ad

d
it
io
n
to

G
D
M

an
d
ge

st
at
io
n
al

IG
T.

b
O
R
¼
od

d
s
ra
ti
o.

c
A
d
ju
st
ed

fo
r
m
at
er
n
al

ag
e,

ra
ce
,p

re
-p
re
gn

an
cy

B
M
Ia

n
d
ed

u
ca
ti
on

;
an

al
ys
es

fo
r
or
ga

n
op

h
os
p
h
or
u
s
p
es
ti
ci
d
e
m
et
ab

ol
it
es

ar
e
ad

d
it
io
n
al
ly

ad
ju
st
ed

fo
r
u
ri
n
ar
y
sp

ec
ifi
c
gr
av

it
y;

an
al
ys
es

fo
r
PC

B
s
an

d
or
ga

n
oc

h
lo
ri
n
e
p
es
ti
ci
d
es

ar
e
ad

d
it
io
n
al
ly

ad
ju
st
ed

fo
r
to
ta
l
lip

id
s.

d
p
-v
al
u
e
fr
om

lin
ea

r
te
st

fo
r
tr
en

d
ac
ro
ss

ex
p
os
u
re

ca
te
go

ri
es
.

G.D. Shapiro et al. / Environmental Research 147 (2016) 71–81 77
statistical evidence of inverse associations between urine con-
centrations of two OP pesticide metabolites, DMP and DMTP, with
GDM, and GDM and IGT combined. We found no consistent evi-
dence of an association between levels of the other chemicals we
examined and GDM or gestational IGT in the adjusted analyses.

The inverse associations we observed between DMP and DMTP
with GDM are puzzling and, to our knowledge, have not been
reported in previous studies. OP pesticides are hypothesized to
increase the risk of diabetes through accumulation of acetylcho-
line leading to increased mobilization of glucose, but acetylcholine
could also lead to increased insulin secretion in some cases, which
would likely be protective against GDM (Rodriguez-Diaz et al.,
2011), and hypoglycemia has been observed following exposure to
OP pesticides in some experimental studies using animal models
(Rahimi and Abdollahi, 2007). We cannot rule out the influence of
residual confounding due to unmeasured protective factors, such
as nutritional benefits from consumption of fruits and vegetables
also associated with pesticide exposure, on the observed associa-
tions between maternal OP pesticide metabolites and GDM. A
recent literature review found that the nutritional exposures
showing the most salient relationships with increased risk of GDM
were higher dietary fat and lower carbohydrate intakes (Morisset
et al., 2010). While a protective effect of fruit and vegetable con-
sumption for GDM has not been demonstrated, fruits and vege-
tables are likely to displace fat in the diet, as they are high fibre /
high satiety foods. Furthermore, women who consume high levels
of fruit and vegetables may also be at reduced risk for GDM due to
other lifestyle variables that we did not measure, such as physical
activity. The dietary measurements in the MIREC Study were not
designed to measure fruit and vegetable consumption and in-
cluded only select fruits and vegetables. Thus, we are unable to
test the role that this potential bias may play in our findings.

The epidemiologic literature examining the association be-
tween OP pesticides and diabetes has primarily occurred in oc-
cupationally exposed populations. In one of the few cohort studies
examining the association between pesticide exposure and GDM,
self-reported exposure to two organophosphate pesticides (diazi-
non, phorate) during the first trimester were associated with an
increased risk of GDM though the number of exposed cases was
relatively small (Saldana et al., 2007). Another study also reported
positive associations between OP pesticide exposure and incident
diabetes among famers’ wives (Starling, 2014) and among male
farmers (Montgomery et al., 2008). Unlike the MIREC Study, these
studies used self-reported data for both exposure and outcome
assessments. Comparison of our results and these previous studies
is challenged by differences in study sample (with MIREC being a
primarily urban sample with low chronic exposure, primarily from
the diet) and exposure assessment methods (biomarker vs. self-
reported).

Not surprisingly, the OP pesticide metabolite concentrations in
the MIREC cohort were lower than reported in residents or
workers of agricultural communities. OP metabolite concentra-
tions among MIREC participants were lower than reported in a
cohort of pregnant women living in an agricultural community in
California (Bradman et al., 2005), in a cohort of pregnant women
without diabetes living in agricultural areas in Thailand (Kongtip
et al., 2014), and in a cohort of Japanese workers with environ-
mental or occupational exposures to OPs (Ueyama et al., 2012).
Thus, the lower concentrations in the MIREC study may contribute
to differences in the observed results and positive associations
reported in occupationally exposed populations. When compared
to non-agricultural cohorts, OP pesticide metabolite concentra-
tions were similar or higher in the MIREC cohort compared to
other general population cohorts (Berman et al., 2013). Con-
centrations of OP pesticide metabolites in our study were higher
than reported in the U.S. NHANES (Barr et al., 2011).



Fig. 1. Restricted spline curve associations between log10 organophosphorus pesticide metabolites and log odds of study outcomes, adjusted for maternal age, race, pre-
pregnancy BMI, education and urinary specific gravity. Knots were located at the 5th, 50th and 95th percentiles. Dashed lines¼95% CI; dots¼knots.

Fig. 2. Restricted spline curve association between log10 PFHxS (μg/L) and log odds
of gestational IGT, adjusted for maternal age, race, pre-pregnancy BMI and educa-
tion. Knots were located at the 5th, 50th and 95th percentiles. Dashed lines¼95%
CI; dots¼knots.
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Concentrations of DMTP were higher in MIREC participants than
among women age 20–39 in Cycle 1 of the Canadian Health
Measures Survey (CHMS), while levels of DEP and DMP were si-
milar between the two studies (Health Canada, 2010).

Literature regarding associations between the other chemical
classes measured in this study and diabetes among pregnant po-
pulations is scarce. Studies that have examined potential associa-
tions between diabetes and exposure to organochlorine pesticides,
PCBs, and PFASs have largely focused on type 2 diabetes or self-
reported diabetes. For example, positive associations between OC
pesticides and diabetes have been identified in U.S. NHANES
(Everett and Matheson, 2010; Lee et al., 2006), the Hispanic Health
and Nutrition Study (Cox et al., 2007), a Helsinki cohort study
(Airaksinen et al., 2011), and a cross-sectional analysis of Great
Lakes sport fish consumers (Turyk et al., 2009b). In contrast, null
or negative results have also been reported between OC pesticides
and diabetes (Gasull et al., 2012; Wu et al., 2013).

Literature regarding the association between PFAS exposure
and diabetes is equivocal, with cohort (Leonard et al., 2008; Lun-
din et al., 2009) and cross-sectional analyses (Lin et al., 2009) re-
porting both positive (Leonard et al., 2008; Lundin et al., 2009)
(Lin et al., 2009) and negative or null findings (Karnes et al., 2014;
Lind et al., 2014; MacNeil et al., 2009; Nelson et al., 2010). A recent
study of PFAS exposure and GDM found a positive association for
PFOA, with no significant associations found for six other PFASs
(Zhang et al., 2015). While we did not find statistical evidence of
associations between PFASs and our study outcomes in cubic
spline models, results from our regression analysis on PFHxS and
gestational IGT are consistent with a low-dose effects hypothesis.
Associations between low doses of other persistent organic pol-
lutants have been reported with incident diabetes (Lee et al., 2010)
and metabolic precursors to diabetes (Lee et al., 2011).

PCB exposure has been found to be associated with diabetes
though, to our knowledge, no identified study has focussed on
prenatal exposure and GDM. Analysis from a pregnancy cohort of
similar size to the MIREC Study showed a dose-response re-
lationship between total serum PCBs and prevalent diabetes,
though authors did not show results separately for GDM (Long-
necker et al., 2001). A cross-sectional study of 40 pregnant women
without diabetes found that PCB concentration was associated
with reduced insulin sensitivity after adjustment for age and pre-
pregnancy BMI (Chen et al., 2008). PCBs examined in one study
were also associated with markers of insulin in women with a
history of GDM (Arrebola et al., 2015).

It is plausible that the lack of positive association between
these contaminants and GDM in the present study stems from low
overall exposure levels in the MIREC cohort. The OC pesticide
concentrations in our study are substantially lower than in studies
that found associations with type 2 diabetes (Cox et al., 2007; Lee
et al., 2011a, 2010; Philibert et al., 2009; Porta et al., 2012; Rignell-
Hydbom et al., 2009; Son et al., 2010; Turyk et al., 2009b). Our
observed concentrations of DDE were also slightly lower than
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those for women of childbearing age in the CHMS, while con-
centrations of oxychlordane and trans-nonachlor were similar
between the two studies (Health Canada, 2010).

Plasma PFAS concentrations were lower in the MIREC cohort
than in most of the studies we reviewed (Fei et al., 2007; Lin et al.,
2009; Lind et al., 2014; MacNeil et al., 2009; Melzer et al., 2010;
Nelson et al., 2010). PCB levels were also several times lower in our
study compared to other population-based samples (Gasull et al.,
2012; Lee et al., 2010; Porta et al., 2012). Our observed PCB con-
centrations were similar or lower than those measured in a US
cohort (Sexton et al., 2013) and in the CHMS (Health Canada,
2010).

4.1. Strengths and limitations

There were a substantial number of subjects for whom a GCT
was not performed and who were therefore excluded from our
analyses, reducing statistical power. However, given the small
magnitude of the differences between included and excluded
participants on demographic variables, we do not expect that our
findings would be strongly affected by selection bias. It should be
acknowledged that findings from the regression analyses are
based on small numbers of cases in each quartile. Therefore, some
of our negative findings may be due to type 2 error. Additionally,
while we were able to adjust for a wide range of potential con-
founding variables, there remains a possibility of residual con-
founding by dietary intake or other factors not measured. Speci-
fically, data were not collected on the presence of diabetes in re-
latives of MIREC Study participants, and family history of diabetes
may constitute an unmeasured confounding variable. In light of
the observed correlations across exposure classes and the ex-
ploratory nature of our study, we examined only individual ex-
posures and chemical classes. Future work should explore the
impact of sums of different types of exposures.

An important limitation of our analysis is the use of a single ur-
inary measure for OP pesticide metabolites. As these chemicals have
short elimination half-lives (Lambert et al., 2005; Lu et al., 2008;
Rauch et al., 2012), within-person reliability in urinary OP metabolite
concentrations has been reported as weak to moderate, with in-
traclass correlation coefficients ranging from 0.21 to 0.33 for the
metabolites that we examined (Spaan et al., 2015). Thus our use of a
single measurement may not reflect overall exposure in pregnancy.
Future studies incorporating multiple measurements are needed to
better illuminate variation in levels and effects of OP pesticides across
pregnancy.

The MIREC study sample exhibits a low-risk socioeconomic
profile in terms of education, nativity, smoking and marital status,
compared to the overall Canadian population giving birth at the
time the MIREC participants were recruited (Arbuckle et al., 2013).
Our results therefore may have limited generalizability to other
populations with differing socioeconomic characteristics and ex-
posure patterns, particularly those with occupational exposure to
the chemicals we examined. Along these lines, our analyses were
limited to chemical exposures for which there were detectable
levels in 475% of subjects. This resulted in the exclusion of several
chemicals assessed in the MIREC Study, including three OP pesti-
cide metabolites, eight OC pesticides, and 20 PCBs. Further study
of these chemicals in relation to diabetes may be warranted, par-
ticularly in areas with higher concentrations.

These limitations must be weighed against several important
strengths of our study, including the prospective study design and the
comprehensive questionnaire data and anthropometric measure-
ments collected in the MIREC Study, which enabled us to control for a
rich variety of potential confounding variables. We also measured our
study outcomes from medical charts using standard guidelines, rather
than relying on self-reported outcome measures.
5. Conclusions

Using a prospective cohort design, we evaluated the relation-
ships between OP and OC pesticides, PFASs, and PCBs measured
during the first trimester of pregnancy with risk of being diag-
nosed with GDM or gestational IGT based on published national
guidelines. Though we did not find consistent evidence for any
positive associations between the chemicals we examined and
GDM or gestational IGT, we observed strong inverse associations
between dimethyl OP pesticide metabolites and GDM. These
findings require further investigation in other populations.
Funding sources

This study was funded by a grant from the Canadian Diabetes
Association (OG-2-11-3424). The MIREC Study was funded by the
Chemicals Management Plan of Health Canada, the Canadian In-
stitutes for Health Research (MOP – 81285), and the Ontario
Ministry of the Environment.

All participants in this study signed informed consent forms,
and the study received ethical approval from Health Canada and
all the study centres.

The authors declare they have no actual or potential competing
financial interests.
Acknowledgement

We would like to acknowledge the MIREC Study Group as well
as the MIREC study participants and staff for their dedication. We
are also grateful to Dr. Randall Phelps for input to this manuscript.
References

Aerts, L., Van Assche, F.A., 2006. Animal evidence for the transgenerational devel-
opment of diabetes mellitus. Int. J. Biochem. Cell Biol. 38 (5–6), 894–903.

Airaksinen, R., Rantakokko, P., Eriksson, J.G., Blomstedt, P., Kajantie, E., Kiviranta, H.,
2011. Association between type 2 diabetes and exposure to persistent organic
pollutants. Diabetes Care 34 (9), 1972–1979.

Arbuckle, T.E., Davis, K., Marro, L., Fisher, M., Legrand, M., Leblanc, A., Gaudreau, E.,
Foster, W.G., Choeurng, V., Fraser, W.D., The MIREC Study Group, 2014. Phtha-
late and bisphenol A exposure among pregnant women in Canada-Results from
the MIREC study. Environ. Int. 68, 55–65.

Arbuckle, T.E., Fraser, W.D., Fisher, M., Davis, K., Liang, C.L., Lupien, N., Bastien, S.,
Velez, M.P., von Dadelszen, P., Hemmings, D.G., Wang, J., Helewa, M., Taback, S.,
Sermer, M., Foster, W., Ross, G., Fredette, P., Smith, G., Walker, M., Shear, R.,
Dodds, L., Ettinger, A.S., Weber, J.P., D’Amour, M., Legrand, M., Kumarathasan, P.,
Vincent, R., Luo, Z.C., Platt, R.W., Mitchell, G., Hidiroglou, N., Cockell, K., Ville-
neuve, M., Rawn, D.F., Dabeka, R., Cao, X.L., Becalski, A., Ratnayake, N., Bondy, G.,
Jin, X., Wang, Z., Tittlemier, S., Julien, P., Avard, D., Weiler, H., Leblanc, A.,
Muckle, G., Boivin, M., Dionne, G., Ayotte, P., Lanphear, B., Seguin, J.R., Saint-
Amour, D., Dewailly, E., Monnier, P., Koren, G., Ouellet, E., 2013. Cohort profile:
the maternal-infant research on environmental chemicals research platform.
Paediatr. Perinat. Epidemiol. 27 (4), 415–425.

Arcury, T.A., Grzywacz, J.G., Davis, S.W., Barr, D.B., Quandt, S.A., 2006. Organopho-
sphorus pesticide urinary metabolite levels of children in farmworker house-
holds in eastern North Carolina. Am. J. Ind. Med. 49 (9), 751–760.

Arrebola, J.P., Gonzalez-Jimenez, A., Fornieles-Gonzalez, C., Artacho-Cordon, F., Olea,
N., Escobar-Jimenez, F., Fernandez-Soto, M.L., 2015. Relationship between ser-
um concentrations of persistent organic pollutants and markers of insulin re-
sistance in a cohort of women with a history of gestational diabetes mellitus.
Environ. Res. 136, 435–440.

Azandjeme, C.S., Delisle, H., Fayomi, B., Ayotte, P., Djrolo, F., Houinato, D., Bouchard,
M., 2014. High serum organochlorine pesticide concentrations in diabetics of a
cotton producing area of the Benin Republic (West Africa). Environ. Int. 69, 1–8.

Barr, D.B., Wong, L.Y., Bravo, R., Weerasekera, G., Odetokun, M., Restrepo, P., Kim, D.
G., Fernandez, C., Whitehead Jr., R.D., Perez, J., Gallegos, M., Williams, B.L.,
Needham, L.L., 2011. Urinary concentrations of dialkylphosphate metabolites of
organophosphorus pesticides: National Health and Nutrition Examination
Survey 1999–2004. Int. J. Environ. Res. Public Health 8 (8), 3063–3098.

Berger, H., Crane, J., Farine, D., Armson, A., De La Ronde, S., Keenan-Lindsay, L.,
Leduc, L., Reid, G., Van Aerde, J., Maternal-Fetal Medicine Committee, Executive

http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref1
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref1
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref1
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref2
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref2
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref2
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref2
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref3
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref3
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref3
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref3
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref3
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref4
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref4
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref4
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref4
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref4
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref4
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref4
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref4
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref4
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref4
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref4
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref4
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref5
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref5
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref5
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref5
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref6
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref6
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref6
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref6
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref6
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref6
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref7
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref7
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref7
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref7
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref8
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref8
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref8
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref8
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref8
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref8
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref9
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref9


G.D. Shapiro et al. / Environmental Research 147 (2016) 71–8180
and Council for the Society of Obstetricians and Gynaecologists of Canada,
2002. Screening for gestational diabetes mellitus. J. Obstet. Gynaecol. Can. 24
(11), 894–912.

Berman, T., Goldsmith, R., Goen, T., Spungen, J., Novack, L., Levine, H., Amitai, Y.,
Shohat, T., Grotto, I., 2013. Urinary concentrations of organophosphate pesticide
metabolites in adults in Israel: demographic and dietary predictors. Environ.
Int. 60, 183–189.

Bezek, S., Ujhazy, E., Mach, M., Navarova, J., Dubovicky, M., 2008. Developmental
origin of chronic diseases: toxicological implication. Interdiscip. Toxicol. 1 (1),
29–31.

Bradman, A., Eskenazi, B., Barr, D.B., Bravo, R., Castorina, R., Chevrier, J., Kogut, K.,
Harnly, M.E., McKone, T.E., 2005. Organophosphate urinary metabolite levels
during pregnancy and after delivery in women living in an agricultural com-
munity. Environ. Health Perspect. 113 (12), 1802–1807.

Canadian Diabetes Association Clinical Practice Guidelines Expert Committee, 2008.
Canadian Diabetes Association 2008 clinical practice guidelines for the pre-
vention and management of diabetes in Canada. Can. J. Diabetes 32 (Suppl. 1),
S1–201.

Carpenter, D.O., 2008. Environmental contaminants as risk factors for developing
diabetes. Rev. Environ. Health 23 (1), 59–74.

Chen, J.W., Wang, S.L., Liao, P.C., Chen, H.Y., Ko, Y.C., Lee, C.C., 2008. Relationship
between insulin sensitivity and exposure to dioxins and polychlorinated bi-
phenyls in pregnant women. Environ. Res. 107 (2), 245–253.

Cox, S., Niskar, A.S., Narayan, K.M., Marcus, M., 2007. Prevalence of self-reported
diabetes and exposure to organochlorine pesticides among Mexican Amer-
icans: hispanic health and nutrition examination survey, 1982–1984. Environ.
Health Perspect. 115 (12), 1747–1752.

Davenport, M.H., Campbell, M.K., Mottola, M.F., 2010. Increased incidence of glucose
disorders during pregnancy is not explained by pre-pregnancy obesity in
London, Canada. BMC Pregnancy Childbirth 10, 85.

Desquilbet, L., Mariotti, F., 2010. Dose-response analyses using restricted cubic
spline functions in public health research. Stat. Med. 29 (9), 1037–1057.

Ettinger, A.S., Zota, A.R., Amarasiriwardena, C.J., Hopkins, M.R., Schwartz, J., Hu, H.,
Wright, R.O., 2009. Maternal arsenic exposure and impaired glucose tolerance
during pregnancy. Environ. Health Perspect. 117 (7), 1059–1064.

Everett, C.J., Frithsen, I., Player, M., 2011. Relationship of polychlorinated biphenyls
with type 2 diabetes and hypertension. J. Environ. Monit. 13 (2), 241–251.

Everett, C.J., Matheson, E.M., 2010. Biomarkers of pesticide exposure and diabetes in
the 1999–2004 national health and nutrition examination survey. Environ. Int.
36 (4), 398–401.

Fei, C., McLaughlin, J.K., Tarone, R.E., Olsen, J., 2007. Perfluorinated chemicals and
fetal growth: a study within the Danish National Birth Cohort. Environ. Health
Perspect. 115 (11), 1677–1682.

Feig, D.S., Hwee, J., Shah, B.R., Booth, G.L., Bierman, A.S., Lipscombe, L.L., 2014.
Trends in incidence of diabetes in pregnancy and serious perinatal outcomes: a
large, population-based study in Ontario, Canada, 1996–2010. Diabetes Care.

Galtier, F., 2010. Definition, epidemiology, risk factors. Diabetes Metab. 36 (6 Pt 2),
628–651.

Gasull, M., Pumarega, J., Tellez-Plaza, M., Castell, C., Tresserras, R., Lee, D.H., Porta,
M., 2012. Blood concentrations of persistent organic pollutants and prediabetes
and diabetes in the general population of Catalonia. Environ. Sci. Technol. 46
(14), 7799–7810.

Gray, S.L., Shaw, A.C., Gagne, A.X., Chan, H.M., 2013. Chronic exposure to PCBs
(Aroclor 1254) exacerbates obesity-induced insulin resistance and hyper-
insulinemia in mice. J. Toxicol. Environ. Health A 76 (12), 701–715.

Health Canada, 2010. Report on Human Biomonitoring of Environmental Chemicals
in Canada: Results of the Canadian Health Measures Survey Cycle 1 (2007–
2009). Available from: 〈http://www.hc-sc.gc.ca/ewh-semt/pubs/contaminants/
chms-ecms/index-eng.php〉 (retrieved 24.09.14).

Hectors, T.L., Vanparys, C., van der Ven, K., Martens, G.A., Jorens, P.G., Van Gaal, L.F.,
Covaci, A., De Coen, W., Blust, R., 2011. Environmental pollutants and type
2 diabetes: a review of mechanisms that can disrupt beta cell function. Dia-
betologia 54 (6), 1273–1290.

Howell 3rd, G., Mangum, L., 2011. Exposure to bioaccumulative organochlorine
compounds alters adipogenesis, fatty acid uptake, and adipokine production in
NIH3T3-L1 cells. Toxicol. In Vitro 25 (1), 394–402.

International Diabetes Federation, 2013. IDF Diabetes Atlas, 6th edn. Available from:
〈http://www.idf.org/diabetesatlas〉 (retrieved 21.05.14).

Just, A.C., Adibi, J.J., Rundle, A.G., Calafat, A.M., Camann, D.E., Hauser, R., Silva, M.J.,
Whyatt, R.M., 2010. Urinary and air phthalate concentrations and self-reported
use of personal care products among minority pregnant women in New York
city. J. Expo. Sci. Environ. Epidemiol. 20 (7), 625–633.

Karnes, C., Winquist, A., Steenland, K., 2014. Incidence of type II diabetes in a cohort
with substantial exposure to perfluorooctanoic acid. Environ. Res. 128, 78–83.

Kongtip, P., Nankongnab, N., Woskie, S., Phamonphon, A., Tharnpoophasiam, P.,
Wilaiwan, K., Srasom, P., 2014. Organophosphate urinary metabolite levels
during pregnancy, delivery and postpartum in women living in agricultural
areas in Thailand. J. Occup. Health 55 (5), 367–375.

Kuo, C.C., Moon, K., Thayer, K.A., Navas-Acien, A., 2013. Environmental chemicals
and type 2 diabetes: an updated systematic review of the epidemiologic evi-
dence. Curr. Diabetes Rep. 13 (6), 831–849.

Lambert, W.E., Lasarev, M., Muniz, J., Scherer, J., Rothlein, J., Santana, J., McCauley, L.,
2005. Variation in organophosphate pesticide metabolites in urine of children
living in agricultural communities. Environ. Health Perspect. 113 (4), 504–508.

Lee, D.H., Lee, I.K., Song, K., Steffes, M., Toscano, W., Baker, B.A., Jacobs Jr., D.R., 2006.
A strong dose-response relation between serum concentrations of persistent
organic pollutants and diabetes: results from the National Health and Ex-
amination Survey 1999–2002. Diabetes Care 29 (7), 1638–1644.

Lee, D.H., Porta, M., Jacobs Jr., D.R., Vandenberg, L.N., 2014. Chlorinated persistent
organic pollutants, obesity, and type 2 diabetes. Endocr. Rev. 35 (4), 557–601.

Lee, D.H., Steffes, M.W., Sjodin, A., Jones, R.S., Needham, L.L., Jacobs Jr., D.R., 2010.
Low dose of some persistent organic pollutants predicts type 2 diabetes: a
nested case-control study. Environ. Health Perspect. 118 (9), 1235–1242.

Lee, D.H., Steffes, M.W., Sjodin, A., Jones, R.S., Needham, L.L., Jacobs Jr., D.R., 2011.
Low dose organochlorine pesticides and polychlorinated biphenyls predict
obesity, dyslipidemia, and insulin resistance among people free of diabetes.
PLoS One 6, e15977.

Lee, D.H., Lind, P.M., Jacobs Jr., D.R., Salihovic, S., van Bavel, B., Lind, L., 2011a.
Polychlorinated biphenyls and organochlorine pesticides in plasma predict
development of type 2 diabetes in the elderly: the prospective investigation of
the vasculature in Uppsala Seniors (PIVUS) study. Diabetes Care 34 (8),
1778–1784.

Leonard, R.C., Kreckmann, K.H., Sakr, C.J., Symons, J.M., 2008. Retrospective cohort
mortality study of workers in a polymer production plant including a reference
population of regional workers. Ann. Epidemiol. 18 (1), 15–22.

Lin, C.Y., Chen, P.C., Lin, Y.C., Lin, L.Y., 2009. Association among serum perfluoroalkyl
chemicals, glucose homeostasis, and metabolic syndrome in adolescents and
adults. Diabetes Care 32 (4), 702–707.

Lind, L., Zethelius, B., Salihovic, S., van Bavel, B., Lind, P.M., 2014. Circulating levels of
perfluoroalkyl substances and prevalent diabetes in the elderly. Diabetologia 57
(3), 473–479.

Longnecker, M.P., Klebanoff, M.A., Brock, J.W., Zhou, H., Collaborative Perinatal, P.,
2001. Polychlorinated biphenyl serum levels in pregnant subjects with dia-
betes. Diabetes Care 24 (6), 1099–1101.

Lu, C., Barr, D.B., Pearson, M.A., Waller, L.A., 2008. Dietary intake and its con-
tribution to longitudinal organophosphorus pesticide exposure in urban/sub-
urban children. Environ. Health Perspect. 116 (4), 537–542.

Lundin, J.I., Alexander, B.H., Olsen, G.W., Church, T.R., 2009. Ammonium per-
fluorooctanoate production and occupational mortality. Epidemiology 20 (6),
921–928.

Lv, Z., Li, G., Li, Y., Ying, C., Chen, J., Chen, T., Wei, J., Lin, Y., Jiang, Y., Wang, Y., Shu, B.,
Xu, B., Xu, S., 2013. Glucose and lipid homeostasis in adult rat is impaired by
early-life exposure to perfluorooctane sulfonate. Environ. Toxicol. 28 (9),
532–542.

MacNeil, J., Steenland, N.K., Shankar, A., Ducatman, A., 2009. A cross-sectional
analysis of type II diabetes in a community with exposure to perfluorooctanoic
acid (PFOA). Environ. Res. 109 (8), 997–1003.

Melzer, D., Rice, N., Depledge, M.H., Henley, W.E., Galloway, T.S., 2010. Association
between serum perfluorooctanoic acid (PFOA) and thyroid disease in the U.S.
National Health and Nutrition Examination Survey. Environ. Health Perspect.
118 (5), 686–692.

Montgomery, M.P., Kamel, F., Saldana, T.M., Alavanja, M.C., Sandler, D.P., 2008. In-
cident diabetes and pesticide exposure among licensed pesticide applicators:
agricultural Health Study, 1993–2003. Am. J. Epidemiol. 167 (10), 1235–1246.

Morisset, A.S., St-Yves, A., Veillette, J., Weisnagel, S.J., Tchernof, A., Robitaille, J.,
2010. Prevention of gestational diabetes mellitus: a review of studies on weight
management. Diabetes Metab. Res. Rev. 26 (1), 17–25.

Nelson, J.W., Hatch, E.E., Webster, T.F., 2010. Exposure to polyfluoroalkyl chemicals
and cholesterol, body weight, and insulin resistance in the general U.S. popu-
lation. Environ. Health Perspect. 118 (2), 197–202.

Newbold, R.R., 2011. Developmental exposure to endocrine-disrupting chemicals
programs for reproductive tract alterations and obesity later in life. Am. J. Clin.
Nutr. 94 (Suppl. 6), 1939S–1942S.

Osgood, N.D., Dyck, R.F., Grassmann, W.K., 2011. The inter- and intragenerational
impact of gestational diabetes on the epidemic of type 2 diabetes. Am. J. Public
Health 101 (1), 173–179.

Philibert, A., Schwartz, H., Mergler, D., 2009. An exploratory study of diabetes in a
First Nation community with respect to serum concentrations of p,p′-DDE and
PCBs and fish consumption. Int. J. Environ. Res. Public Health 6 (12), 3179–3189.

Porta, M., Lopez, T., Gasull, M., Rodriguez-Sanz, M., Gari, M., Pumarega, J., Borrell, C.,
Grimalt, J.O., 2012. Distribution of blood concentrations of persistent organic
pollutants in a representative sample of the population of Barcelona in 2006,
and comparison with levels in 2002. Sci. Total Environ. 423, 151–161.

Public Health Agency of Canada, 2011. Diabetes in Canada: Facts and Figures from a
Public Health Perspective. Available from: 〈http://www.phac-aspc.gc.ca/cd-mc/
publications/diabetes-diabete/facts-figures-faits-chiffres-2011/index-eng.php〉
(retrieved 21.05.14.

Rahimi, R., Abdollahi, M., 2007. A review on the mechanisms involved in hy-
perglycemia induced by organophosphorus pesticides. Pestic. Biochem. Physiol.
88 (2), 115–121.

Rauch, S.A., Braun, J.M., Barr, D.B., Calafat, A.M., Khoury, J., Montesano, A.M., Yolton,
K., Lanphear, B.P., 2012. Associations of prenatal exposure to organophosphate
pesticide metabolites with gestational age and birth weight. Environ. Health
Perspect. 120 (7), 1055–1060.

Rezg, R., Mornagui, B., El-Fazaa, S., Gharbi, N., 2010. Organophosphorus pesticides
as food chain contaminants and type 2 diabetes: a review. Trends Food Sci.
Technol. 21 (7), 345–357.

Rignell-Hydbom, A., Lidfeldt, J., Kiviranta, H., Rantakokko, P., Samsioe, G., Agardh, C.
D., Rylander, L., 2009. Exposure to p,p′-DDE: a risk factor for type 2 diabetes.
PLoS One 4 (10), e7503.

Rignell-Hydbom, A., Rylander, L., Hagmar, L., 2007. Exposure to persistent organo-
chlorine pollutants and type 2 diabetes mellitus. Hum. Exp. Toxicol. 26 (5), 447–452.

http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref9
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref9
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref9
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref9
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref10
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref10
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref10
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref10
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref10
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref11
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref11
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref11
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref11
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref12
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref12
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref12
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref12
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref12
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref13
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref13
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref13
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref13
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref13
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref14
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref14
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref14
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref15
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref15
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref15
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref15
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref16
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref16
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref16
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref16
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref16
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref17
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref17
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref17
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref18
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref18
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref18
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref19
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref19
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref19
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref19
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref20
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref20
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref20
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref21
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref21
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref21
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref21
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref22
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref22
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref22
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref22
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref23
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref23
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref23
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref24
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref24
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref24
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref25
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref25
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref25
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref25
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref25
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref26
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref26
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref26
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref26
http://www.hc-sc.gc.ca/ewh-semt/pubs/contaminants/chms-ecms/index-eng.php
http://www.hc-sc.gc.ca/ewh-semt/pubs/contaminants/chms-ecms/index-eng.php
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref27
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref27
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref27
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref27
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref27
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref28
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref28
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref28
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref28
http://www.idf.org/diabetesatlas
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref29
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref29
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref29
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref29
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref29
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref30
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref30
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref30
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref31
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref31
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref31
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref31
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref31
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref32
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref32
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref32
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref32
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref33
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref33
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref33
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref33
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref34
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref34
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref34
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref34
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref34
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref35
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref35
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref35
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref36
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref36
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref36
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref36
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref37
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref37
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref37
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref37
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref38
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref38
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref38
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref38
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref38
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref38
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref39
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref39
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref39
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref39
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref40
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref40
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref40
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref40
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref41
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref41
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref41
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref41
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref42
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref42
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref42
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref42
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref43
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref43
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref43
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref43
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref44
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref44
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref44
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref44
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref45
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref45
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref45
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref45
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref45
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref46
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref46
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref46
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref46
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref47
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref47
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref47
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref47
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref47
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref48
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref48
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref48
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref48
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref49
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref49
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref49
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref49
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref50
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref50
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref50
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref50
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref51
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref51
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref51
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref51
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref52
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref52
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref52
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref52
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref53
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref53
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref53
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref53
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref54
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref54
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref54
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref54
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref54
http://www.phac-aspc.gc.ca/cd-mc/publications/diabetes-diabete/facts-figures-faits-chiffres-2011/index-eng.php
http://www.phac-aspc.gc.ca/cd-mc/publications/diabetes-diabete/facts-figures-faits-chiffres-2011/index-eng.php
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref55
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref55
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref55
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref55
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref56
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref56
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref56
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref56
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref56
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref57
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref57
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref57
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref57
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref58
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref58
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref58
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref59
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref59
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref59


G.D. Shapiro et al. / Environmental Research 147 (2016) 71–81 81
Robledo, C., Peck, J.D., Stoner, J.A., Carabin, H., Cowan, L., Koch, H.M., Goodman, J.R.,
2013. Is bisphenol-A exposure during pregnancy associated with blood glucose
levels or diagnosis of gestational diabetes? J. Toxicol. Environ. Health A 76 (14),
865–873.

Rodriguez-Diaz, R., Dando, R., Jacques-Silva, M.C., Fachado, A., Molina, J., Abdulreda,
M.H., Ricordi, C., Roper, S.D., Berggren, P.-O., Caicedo, A., 2011. Alpha cells se-
crete acetylcholine as a non-neuronal paracrine signal priming beta cell func-
tion in humans. Nat. Med. 17, 888–892.

Saldana, T.M., Basso, O., Hoppin, J.A., Baird, D.D., Knott, C., Blair, A., Alavanja, M.C.,
Sandler, D.P., 2007. Pesticide exposure and self-reported gestational diabetes
mellitus in the Agricultural Health Study. Diabetes Care 30 (3), 529–534.

Saunders, L., Kadhel, P., Costet, N., Rouget, F., Monfort, C., Thome, J.P., Guldner, L.,
Cordier, S., Multigner, L., 2014. Hypertensive disorders of pregnancy and ge-
stational diabetes mellitus among French Caribbean women chronically ex-
posed to chlordecone. Environ. Int. 68, 171–176.

Schisterman, E.F., Whitcomb, B.W., Louis, G.M., Louis, T.A., 2005. Lipid adjustment in
the analysis of environmental contaminants and human health risks. Environ.
Health Perspect. 113 (7), 853–857.

Sexton, K., Salinas, J.J., McDonald, T.J., Gowen, R.M., Miller, R.P., McCormick, J.B.,
Fisher-Hoch, S.P., 2013. Biomarker measurements of prenatal exposure to
polychlorinated biphenyls (PCB) in umbilical cord blood from postpartum
Hispanic women in Brownsville, Texas. J. Toxicol. Environ. Health A 76 (22),
1225–1235.

Shapiro, G.D., Dodds, L., Arbuckle, T.E., Ashley-Martin, J., Fraser, W., Fisher, M., Ta-
back, S., Keely, E., Bouchard, M.F., Monnier, P., Dallaire, R., Morisset, A., Ettinger,
A.S., 2015. Exposure to phthalates, bisphenol A and metals in pregnancy and
the association with impaired glucose tolerance and gestational diabetes mel-
litus: the MIREC study. Environ. Int. 83, 63–71.

Son, H.K., Kim, S.A., Kang, J.H., Chang, Y.S., Park, S.K., Lee, S.K., Jacobs, D.R., Lee, D.H.,
2010. Strong associations between low-dose organochlorine pesticides and
type 2 diabetes in Korea. Environ. Int. 36 (5), 410–414.

Spaan, S., Pronk, A., Koch, H.M., Jusko, T.A., Jaddoe, V.W., Shaw, P.A., Tiemeier, H.M.,
Hofman, A., Pierik, F.H., Longnecker, M.P., 2015. Reliability of concentrations of
organophosphate pesticide metabolites in serial urine specimens from
pregnancy in the Generation R Study. J. Expo. Sci. Environ. Epidemiol. 25 (3),
286–294.

Starling, A.P., Umbach, D.M., Kamel, F., Long, S., Sandler, D.P., Hoppin, J.A., 2014.
Pesticide use and incident diabetes among wives of farmers in the Agricultural
Health Study. Occup. Environ. Med. 71 (9), 629–635.

Steenland, K., Fletcher, T., Savitz, D.A., 2010. Epidemiologic evidence on the health
effects of perfluorooctanoic acid (PFOA). Environ. Health Perspect. 118 (8),
1100–1108.

Thayer, K.A., Heindel, J.J., Bucher, J.R., Gallo, M.A., 2012. Role of environmental
chemicals in diabetes and obesity: a National Toxicology Program workshop
review. Environ. Health Perspect. 120 (6), 779–789.

Turyk, M., Anderson, H., Knobeloch, L., Imm, P., Persky, V., 2009a. Organochlorine
exposure and incidence of diabetes in a cohort of Great Lakes sport fish con-
sumers. Environ. Health Perspect. 117 (7), 1076–1082.

Turyk, M., Anderson, H.A., Knobeloch, L., Imm, P., Persky, V.W., 2009b. Prevalence of
diabetes and body burdens of polychlorinated biphenyls, polybrominated di-
phenyl ethers, and p,p′-diphenyldichloroethene in Great Lakes sport fish con-
sumers. Chemosphere 75 (5), 674–679.

Ueyama, J., Saito, I., Kondo, T., Taki, T., Kimata, A., Saito, S., Ito, Y., Murata, K., Iwata,
T., Gotoh, M., Shibata, E., Wakusawa, S., Kamijima, M., 2012. Urinary con-
centrations of organophosphorus insecticide metabolites in Japanese workers.
Chemosphere 87 (11), 1403–1409.

Ukropec, J., Radikova, Z., Huckova, M., Koska, J., Kocan, A., Sebokova, E., Drobna, B.,
Trnovec, T., Susienkova, K., Labudova, V., Gasperikova, D., Langer, P., Klimes, I.,
2010. High prevalence of prediabetes and diabetes in a population exposed to
high levels of an organochlorine cocktail. Diabetologia 53 (5), 899–906.

Wu, H., Bertrand, K.A., Choi, A.L., Hu, F.B., Laden, F., Grandjean, P., Sun, Q., 2013.
Persistent organic pollutants and type 2 diabetes: a prospective analysis in the
nurses' health study and meta-analysis. Environ. Health Perspect. 121 (2),
153–161.

Zhang, C., Sundaram, R., Maisog, J., Calafat, A.M., Barr, D.B., Buck Louis, G.M., 2015. A
prospective study of prepregnancy serum concentrations of perfluorochemicals
and the risk of gestational diabetes. Fertil. Steril. 103 (1), 184–189.

http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref60
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref60
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref60
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref60
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref60
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref61
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref61
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref61
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref61
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref61
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref62
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref62
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref62
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref62
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref63
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref63
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref63
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref63
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref63
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref64
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref64
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref64
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref64
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref65
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref65
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref65
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref65
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref65
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref65
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref66
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref66
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref66
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref66
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref66
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref66
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref67
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref67
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref67
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref67
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref68
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref68
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref68
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref68
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref68
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref68
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref1254
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref1254
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref1254
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref1254
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref69
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref69
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref69
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref69
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref70
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref70
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref70
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref70
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref71
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref71
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref71
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref71
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref72
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref72
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref72
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref72
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref72
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref73
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref73
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref73
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref73
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref73
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref74
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref74
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref74
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref74
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref74
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref75
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref75
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref75
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref75
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref75
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref76
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref76
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref76
http://refhub.elsevier.com/S0013-9351(16)30039-1/sbref76

	Exposure to organophosphorus and organochlorine pesticides, perfluoroalkyl substances, and polychlorinated biphenyls in...
	Introduction
	Materials and methods
	Study sample
	Chemical Biomonitoring data
	Impaired glucose tolerance in pregnancy and gestational diabetes mellitus
	Statistical analyses

	Results
	Discussion
	Strengths and limitations

	Conclusions
	Funding sources
	Acknowledgement
	References




