35. Identification of chemical mixtures to which Canadian pregnant women are exposed: The MIREC Study (abstract)

Lee WC, Fisher M, Davis K, Arbuckle TE, Sinha SK. Environment International 2017 Feb;99:321-330. doi: 10.1016/j.envint.2016.12.015

Depending on the chemical and the outcome, prenatal exposures to environmental chemicals can lead to adverse effects on the pregnancy and child development, especially if exposure occurs during early gestation. Instead of focusing on prenatal exposure to individual chemicals, more studies have taken into account that humans are exposed to multiple environmental chemicals on a daily basis. The objectives of this analysis were to identify the pattern of chemical mixtures to which women are exposed and to characterize women with elevated exposures to various mixtures. Statistical techniques were applied to 28 chemicals measured simultaneously in the first trimester and socio-demographic factors of 1744 participants from the Maternal-Infant Research on Environment Chemicals (MIREC) Study. Cluster analysis was implemented to categorize participants based on their socio-demographic characteristics, while principal component analysis (PCA) was used to extract the chemicals with similar patterns and to reduce the dimension of the dataset. Next, hypothesis testing determined if the mean converted concentrations of chemical substances differed significantly among women with different socio-demographic backgrounds as well as among clusters. Cluster analysis identified six main socio-demographic clusters. Eleven components, which explained approximately 70% of the variance in the data, were retained in the PCA. Persistent organic pollutants (PCB118, PCB138, PCB153, PCB180, OXYCHLOR and TRANSNONA) and phthalates (MEOHP, MEHHP and MEHP) dominated the first and second components, respectively, and the first two components explained 25.8% of the source variation. Prenatal exposure to persistent organic pollutants (first component) were positively associated with women who have lower education or higher income, were born in Canada, have BMI ≥ 25, or were expecting their first child in our study population. MEOHP, MEHHP and MEHP, dominating the second component, were detected in at least 98% of 1744 participants in our cohort study; however, no particular group of pregnant women was identified to be highly exposed to phthalates. While widely recognized as important to studying potential health effects, identifying the mixture of chemicals to which various segments of the population are exposed has been problematic. We present an approach using factor analysis through principal component method and cluster analysis as an attempt to determine the pregnancy exposome. Future studies should focus on how to include these matrices in examining the health effects of prenatal exposure to chemical mixtures in pregnant women and their children.